ProbabilisticFoundationsofStatisticalNetworkAnalysispresentsafreshandinsightfulperspectiveonthefundamentaltenetsandmajorchallengesofmodernnetworkanalysis.Itslucidexpositionprovidesnecessarybackgroundforunderstandingtheessentialideasbehindexchangeableanddynamicnetworkmodels,networksampling,andnetworkstatisticssuchassparsityandpowerlaw,allofwhichplayacentralroleincontemporarydatascienceandmachinelearningapplications.Thebookrewardsreaderswithaclearandintuitiveunderstandingofthesubtleinterplaybetweenbasicprinciplesofstatisticalinference,empiricalpropertiesofnetworkdata,andtechnicalconceptsfromprobabilitytheory.Itsmathematicallyrigorous,yetnon-technical,expositionmakesthebookaccessibletoprofessionaldatascientists,statisticians,andcomputerscientistsaswellaspractitionersandresearchersinsubstantivefields.Newcomersandnon-quantitativeresearcherswillfinditsconceptualapproachinvaluablefordevelopingintuitionabouttechnicalideasfromstatisticsandprobability,whileexpertsandgraduatestudentswillfindthebookahandyreferenceforawiderangeofnewtopics,includingedgeexchangeability,relativeexchangeability,graphonandgraphexmodels,andgraph-valuedLevyprocessandrewiringmodelsfordynamicnetworks.Theauthor’sincisivecommentarysupplementsthesecoreconcepts,challengingthereadertopushbeyondthecurrentlimitationsofthisemergingdiscipline.Withanapproachableexpositionandmorethan50openresearchproblemsandexerciseswithsolutions,thisbookisidealforadvancedundergraduateandgraduatestudentsinterestedinmodernnetworkanalysis,datascience,machinelearning,andstatistics.HarryCraneisAssociateProfessorandCo-DirectoroftheGraduatePrograminStatisticsandBiostatisticsandanAssociateMemberoftheGraduateFacultyinPhilosophyatRutgersUniversity.ProfessorCrane’sresea
2025/12/4 9:52:13
3.24MB
网络分析