首页 开发技术 其它     /    Transformer_models-源码

Transformer_models-源码

上传者: weixin_42097668 | 上传时间:2023/3/30 14:24:23 | 文件大小:232KB | 文件类型:ZIP
Transformer_models-源码
BERT在Azure机械学习效率上此回购搜罗终端到终真个食谱以及的(双向编码器谈判来自变形金刚)用语言表白模子。
伯特BERT是一种语言展现模子,其特色在于能够实用捉拿语料库中深层以及怪异的文本关连。
在原始论文中,作者证明晰BERT模子能够很约莫地改编以构建用于许多NLP责任的最新模子,搜罗文天职类,命名实体识别以及下场解答。
在此堆栈中,咱们提供了条记本,使开拓人员能够从语料库中重新熬炼BERT模子,并微调现有的BERT模子以处置特意的责任。
此回购中提供了的扼要可快捷末了使用BERT。
预熬炼BERT预熬炼中的挑战将BERT语言展现模子预熬炼到所需的准确性水平是极其具备挑战性的。
下场,大大都开拓人员从在尺度语料库(譬如Wikipedia)上经由预熬炼的BERT模子末了,而不是重新末了熬炼它。
假如在与熬炼前步骤中使用的语料库相似的语料库上熬炼最终模子,则此策略下场很好。
然则, 本软件ID:15384927

文件下载

资源详情

[{"title":"(52个子文件232KB)Transformer_models-源码","children":[{"title":"transformer_models-master","children":[{"title":"docs","children":[{"title":"bert-intro.md <span style='color:#111;'>5.01KB</span>","children":null,"spread":false},{"title":"artifacts.md <span style='color:#111;'>2.63KB</span>","children":null,"spread":false},{"title":"dataprep.md <span style='color:#111;'>1.13KB</span>","children":null,"spread":false}],"spread":true},{"title":"huggingface_models","children":[{"title":"modeling_electra.py <span style='color:#111;'>21.83KB</span>","children":null,"spread":false}],"spread":true},{"title":"pretrain","children":[{"title":"PyTorch","children":[{"title":"models.py <span style='color:#111;'>10.96KB</span>","children":null,"spread":false},{"title":"text.py <span style='color:#111;'>107B</span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'>356B</span>","children":null,"spread":false},{"title":"azureml_adapter.py <span style='color:#111;'>1.48KB</span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'>697B</span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'>24.15KB</span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'>6.72KB</span>","children":null,"spread":false},{"title":"benchmark.py <span style='color:#111;'>1.24KB</span>","children":null,"spread":false},{"title":"configuration.py <span style='color:#111;'>1.71KB</span>","children":null,"spread":false},{"title":"dataprep","children":[{"title":"create_pretraining.py <span style='color:#111;'>4.01KB</span>","children":null,"spread":false},{"title":"single_line_doc_file_creation.py <span style='color:#111;'>905B</span>","children":null,"spread":false},{"title":"split_data_into_files.py <span style='color:#111;'>1.54KB</span>","children":null,"spread":false},{"title":"sentence_segmentation.py <span style='color:#111;'>612B</span>","children":null,"spread":false}],"spread":false},{"title":"distributed_apex.py <span style='color:#111;'>24.49KB</span>","children":null,"spread":false},{"title":"sources.py <span style='color:#111;'>9.34KB</span>","children":null,"spread":false},{"title":"checkpoint.py <span style='color:#111;'>2.45KB</span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'>1.17KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>341B</span>","children":null,"spread":false},{"title":"notebooks","children":[{"title":"BERT_Pretrain.ipynb <span style='color:#111;'>17.14KB</span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"configs","children":[{"title":"bert-large-single-node.json <span style='color:#111;'>1019B</span>","children":null,"spread":false},{"title":"bert-base-single-node-rui.json <span style='color:#111;'>1.04KB</span>","children":null,"spread":false},{"title":"bert-base.json <span style='color:#111;'>987B</span>","children":null,"spread":false},{"title":"electra-small-single-node-rui.json <span style='color:#111;'>1.29KB</span>","children":null,"spread":false},{"title":"bert-base-single-node.json <span style='color:#111;'>1013B</span>","children":null,"spread":false},{"title":"bert-large.json <span style='color:#111;'>993B</span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'>2.34KB</span>","children":null,"spread":false},{"title":"scripts","children":[{"title":"single_node_bert.lsf <span style='color:#111;'>1.46KB</span>","children":null,"spread":false},{"title":"single_node_electra.lsf <span style='color:#111;'>1.53KB</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"finetune","children":[{"title":"run_classifier_azureml.py <span style='color:#111;'>45.75KB</span>","children":null,"spread":false},{"title":"evaluate_squad.py <span style='color:#111;'>3.34KB</span>","children":null,"spread":false},{"title":"PyTorch","children":[{"title":"run_finetuning_glue.py <span style='color:#111;'>37.09KB</span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'>4.96KB</span>","children":null,"spread":false},{"title":"azureml_bert_util.py <span style='color:#111;'>4.65KB</span>","children":null,"spread":false},{"title":"notebooks","children":[{"title":"Pretrained-BERT-GLUE.ipynb <span style='color:#111;'>19.20KB</span>","children":null,"spread":false},{"title":"BERT_Eval_GLUE.ipynb <span style='color:#111;'>13.44KB</span>","children":null,"spread":false},{"title":"Pretrained-BERT-NER.ipynb <span style='color:#111;'>46.99KB</span>","children":null,"spread":false},{"title":"BERT_Eval_SQUAD.ipynb <span style='color:#111;'>12.66KB</span>","children":null,"spread":false}],"spread":true},{"title":"run_finetuning_glue_horovodrun.py <span style='color:#111;'>34.22KB</span>","children":null,"spread":false},{"title":"dockerfile <span style='color:#111;'>317B</span>","children":null,"spread":false}],"spread":true},{"title":"run_squad_azureml.py <span style='color:#111;'>45.84KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>9.75KB</span>","children":null,"spread":false},{"title":"scripts","children":[{"title":"single_node_bert_fine_tuning.lsf <span style='color:#111;'>2.51KB</span>","children":null,"spread":false},{"title":"single_node_electra_fine_tuning.lsf <span style='color:#111;'>2.55KB</span>","children":null,"spread":false}],"spread":true},{"title":"TensorFlow","children":[{"title":"run_classifier.py <span style='color:#111;'>32.15KB</span>","children":null,"spread":false},{"title":"download_model_and_dataset.py <span style='color:#111;'>3.04KB</span>","children":null,"spread":false},{"title":"notebooks","children":[{"title":"Tensorflow-BERT-AzureML.ipynb <span style='color:#111;'>139.93KB</span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'>1.13KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>6.31KB</span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明