在eclipse下安装theano库和cuda运行测试文件出现无法打开文件错误,解决办法将对应的.lib文件下载放到对应的Lib文件下
2025/4/29 18:12:54 159KB ucrt.lib uuid.lib kernel32.lib
1
resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5速度快,准确率高,参数不多50层残差网络模型,权重训练自ImageNet该模型在Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序模型的默认输入尺寸:224x224
2025/3/13 0:22:32 90.27MB resnet50 notop tf weights
1
theano官方提供的教程,主要是PDF版,不用去官网看,直接离线看pdf即可。
凑足100字啊100字啊100字啊100字啊100字啊
2024/5/19 12:25:46 3.14MB theano
1
深度学习Theano教程,基于python语言
2024/3/13 4:15:43 1.32MB 深度学习
1
Gorgonia是一个有助于在Go中促进机器学习的图书馆。
轻松编写和评估涉及多维数组的数学方程式。
如果听起来像或,那是因为想法很相似。
具体来说,该库是像Theano这样的低级库,但具有更高的目标(如Tensorflow)。
Gorgonia:可以执行自动区分可以执行符号区分可以执行梯度下降优化可以进行数值稳定提供许多便利功能来帮助创建神经网络相当快(与Theano和Tensorflow的速度相比)支持CUDA/GPGPU计算(尚不支持OpenCL,发送拉取请求)将支持分布式计算目标Gorgonia的主要目标是成为一个高性能的基于机器学习/图形计算的库,可以跨多台机器进行扩展。
它应该将Go(简单的编译和部署过程)的吸引力带给ML世界。
目前距离那里还有很长的路要走,但是婴儿台阶已经在那里。
Gorgonia的次要目标是提供一个探索非标准深度学习和神经网络相关事物的平台。
这包括诸如新希伯来语学习,切角算法,进化算法之类的东西。
为什么要使用G草?使用Gorgonia的主要原因是让开发人员感到舒适。
如果您正在广泛使用Go堆栈,现在就可以在已
2023/9/25 4:07:11 79.98MB go golang machine-learning deep-neural-networks
1
跳过思想火炬Skip-Thoughts.torch是到Pytorch和Torch7的轻量级移植,它们是经过移植。
对火炬的跳过考虑跳过火炬7
2015/4/9 7:22:48 30KB word2vec torch gru rnn
1
LSTM数据集+python源码,实测在Theano环境平台下可用!概况见我的博客:http://blog.csdn.net/zhongkelee/article/details/52090352
2018/1/11 17:07:29 23.19MB LSTM,python
1
机器学习FileTypeIdentifier:一种机器学习算法,用于自动识别文件编写的编程语言类型。
要求Python模块:theano、numpy、scipy、scikit-learn(sudo)pipinstalltheanonumpyscipyscikit-learn用法现在,您可以通过以下命令运行脚本:pythonmain.py或者pythoncode_identifier.py并按照帮助信息(使用部分。
)。
code_identifier.py是用Theano实现的,而main.py是用Scikit-Learn实现的。
PS:这个工具的使用还是有点小技巧的,在near功能上应该愈加人性化。
2017/4/9 7:23:07 399KB Python
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡