DaphneKoller关于ProbabilisticGraphicalModels的最权威大作,内容详实深入,是各大名校机器学习和人工智能专业相应课程的指定教材AdaptiveComputationandMachineLearningThomasdietterich,EditorChristopherBishop,DavidHeckerman,MichaelJordan,andMichaelKearns,AssociateEditorsBioinformatics:TheMachinelearningApproach,PierreBaldiandSorenBrunakReinforcementLearning:AnIntroduction,RichardS.SuttonandAndrewG.BartoGraphicalmodelsforMachineLearningandDigitalCommunication,BrendanJ.FreyLearningingraphicalModels,MichaelI.JordanCausation,Prediction,andSearch,2nded,PeterSpirtes,ClarkGlymour,andRichardScheinesPrinciplesofDataMining,DavidHand,HeikkiMannila,andPadhraicSmythBioinformatics:TheMachineLearningApproach,2nded,PierreBaldiandSorenBrunakLearningKernelclassifiers:TheoryandAlgorithms,RalfHerbrichLearningwithKernels:SupportVectorMachines,Regularization,Optimization,andBeyond,BernhardScholkopfandAlexanderJsmolaIntroductiontoMachineLearning,EthemAlpaydinGaussianProcessesforMachineLearning,CarlEdwardRasmussenandChristopherK.I.WilliamsSemi-SupervisedLearning,OlivierChapelle,BernhardScholkopf,andAlexanderZien,edsTheMinimumdescriptionLengthPrinciple,PeterDGrunwaldIntroductiontoStatisticalRelationalLearning,liseGetoorandBenTaskar,edsProbabilisticGraphicalModels:PrinciplesandTechniques,DaphneKollerandNirFriedmanProbabilisticGraphicalModelsPrinciplesandTechniquesDaphnekollerNirfriedmanThemitpressCambridge,MassachusettsLondon,England@2009MassachusettsInstituteofTechnologyAllrightsreserved.Nopartofthisbookmaybereproducedinanyformbyanyelectronicormechanicalmeans(includingphotocopying,recording,orinformationstorageandretrieval)withoutpermissioninwritingfromthepublisherForinformationaboutspecialquantitydiscounts,pleaseemailspecial_sales@mitpress.mit.eduThisbookwassetbytheauthorsinBlFX2EPrintedandboundintheunitedstatesofamericaLibraryofCongressCataloging-in-PublicationDataKoller,DaphneProbabilisticGraphicalModels:PrinciplesandTechniquesDaphneKollerandNirFriedmanpcm.-(Adaptivecomputationandmachinelearning)IncludesbibliographicalreferencesandindexisBn978-0-262-01319-2(hardcover:alk.paper1.Graphicalmodeling(Statistics)2.Bayesianstatisticaldecisiontheory--Graphicmethods.IKoller,Daphne.II.Friedman,NirQA279.5.K652010519.5’420285-dc222009008615109876543ToourfamiliesmyparentsDovandditzamyhusbanddanmydaughtersnatalieandmayaDKmyparentsNogaandGadmywifemychildrenroyandliorMEAsfarasthelawsofmathematicsrefertoreality,theyarenotcertain,asfarastheyarecertain,theydonotrefertorealityAlberteinstein1956Whenwetrytopickoutanythingbyitself,wefindthatitisboundfastbyathousandinvisiblecordsthatcannotbebroken,toeverythingintheuniverseJohnMuir,1869Theactualscienceoflogicisconversantatpresentonlywiththingseithercertain,impossible,orentirelydoubtful.Thereforethetruelogicforthisworldisthecalculusofprobabilities,whichtakesaccountofthemagnitudeoftheprobabilitywhichis,oroughttobe,inareasonableman'smindJamesClerkMaxwell,1850Thetheoryofprobabilitiesisatbottomnothingbutcommonsensereducedtocalculus;itenablesustoappreciatewithexactnessthatwhichaccuratemindsfeelwithasortofinstinctforwhichofttimestheyareunabletoaccount.PierreSimonLaplace,1819MisunderstandingofprobabilitymaybethegreatestofallimpedimentstoscientificliteracyStephenJayGouldContentsAcknowledgmentsListoffiguresListofalgorithmsListofboxesXXX1IntroductionL1Motivation11.2StructuredProbabilisticModels21.2.1ProbabilisticGraphicalModels31.2.2Representation,Inference,Learning51.3Overviewandroadmap61.3.1OverviewofChapters61.3.2Readersguide1.3.3ConnectiontoOtherDisciplines1.4Historicalnotes122Foundations2.1ProbabilityTheory2.1.1ProbabilityDistributions152.1.2BasicConceptsinProbability182.1.3RandomVariablesandJointDistributions192.1.4IndependenceandConditionalIndependence2:2.1.5QueryingaDistribution2.1.6ContinuousSpaces272.1.7ExpectationandVariance312.2Graphs342.2.1Nodesandedges342.2.2Subgraphs352.2.3Pathsandtrails36
2025/8/27 2:53:35 7.51MB PGM
1
LearningwithKernels:SupportVectorMachines,Regularization,Optimization,andBeyondMIT
2024/11/30 9:11:26 36.19MB Machine learning
1
这里列出其中一些名堂:1.[book]globaloptimization(全局最优化算法)2.[book]numerical+optimization(数值最优化经典)3.ConvexOptimizationOverview(凸优化技术综述)4.HandbookofGlobalOptimization(全局优化手册5.IntroductiontoGlobalOptimization全局优化入门.....
1
Numerical-Optimization数值优化第2版高清版pdf电子书带目录
2024/4/29 14:40:05 4.75MB 数值优化   Numerical
1
为实现自然条件下棉花叶片的精准分割,提出一种粒子群(Particle swarm optimization,PSO)优化算法和K-means聚类算法混合的棉花叶片图像分割方法。
本算法将棉花叶片图像在RGB颜色空间模式下采用二维卷积滤波进行去噪预处理,并将预处理后的彩色图像从RGB转换到目标与背景差异性最大的Q分量、超G分量、a*分量;
随后在K均值聚类的一维数据空间中,利用PSO算法向全局像素解的子空间搜寻,通过迭代搜寻得到全局最优解,确定最佳聚类中心点,改善K均值聚类的收敛效果;
最后,对像素进行聚类划分,从而得到棉花叶片分割结果。
按照不同天气条件和不同背景采集了1 200幅棉花叶片样本图像,对本研究算法进行测试。
试验结果表明:该算法对于晴天、阴天和雨天图像中目标(棉花叶片)分割准确率分别达到92.39%、93.55%、88.09%,总体平均分割精度为91.34%,并与传统K均值算法比较,总体平均分割精度提高了5.41%。
分割结果表明,本研究算法能够对3种天气条件(晴天、阴天、雨天)与4种复杂背景(白地膜、黑地膜、秸秆、土壤)特征混合的棉花叶片图像实现准确分割,为棉花叶片的特征提取与病虫害识别等后续处理提供支持。
2024/4/14 16:22:47 2.56MB pdf
1
DescriptionObject-orientedlinearalgebraandnumericalmethodslibraryinObjectPascal-DynamicIntegef,Float,String,Boolean,Complexarrays-Input/Outputroutines-LinearAlgebra,Numericalmethods,Optimization,Signal/Dataprocessing
2023/3/13 4:26:06 754KB delphi  matrix linear alg
1
dynamicoptimizationdynamicoptimizationdynamicoptimizationdynamicoptimization静态优化
2015/11/13 18:36:18 8.29MB dynamic 动态 优化
1
智能算法-遗传算法、蚁群算法、粒子群算法实现。
实现版本Java,Python,MatLab多版本实现。
具体详细阐明上傳附件檔案內資料夾有每个算法有着详细的阐明README蚁群算法:Ant_Colony_Optimization遗传算法:Genetic_Algorithm免疫算法:Immunity_Algorithm粒子群:ParticleSwarmOptimization
2017/9/2 22:36:16 1.58MB 遗传算法 蚁群算法 粒子群算法
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡