Thisbookequipsreaderstohandlecomplexmulti-viewdatarepresentation,centeredaroundseveralmajorvisualapplications,sharingmanytipsandinsightsthroughaunifiedlearningframework.Thisframeworkisabletomodelmostexistingmulti-viewlearninganddomainadaptation,enrichingreaders’understandingfromtheirsimilarity,anddifferencesbasedondataorganizationandproblemsettings,aswellastheresearchgoal.Acomprehensivereviewexhaustivelyprovidesthekeyrecentresearchonmulti-viewdataanalysis,i.e.,multi-viewclustering,multi-viewclassification,zero-shotlearning,anddomainadaption.Morepracticalchallengesinmulti-viewdataanalysisarediscussedincludingincomplete,unbalancedandlarge-scalemulti-viewlearning.LearningRepresentationforMulti-ViewDataAnalysiscoversawiderangeofapplicationsintheresearchfieldsofbigdata,human-centeredcomputing,patternrecognition,digitalmarketing,webmining,andcomputervision.
1