KD-Tree是一种由二叉搜索树推广而来的用于多维检索的树的结构形式(K即为空间的维数)。
它与二叉搜索树不同的是它的每个结点表示k维空间的一个点,并且每一层都根据该层的分辨器(discriminator)对相应对象做出分枝决策。
顶层结点按由分辨器决定的一个维度进行划分,第二层则按照该层的分辨器决定的一个维进行划分···,以此类推在余下各维之间不断地划分。
直至一个结点中的点数少于给定的最大点数时,结束划分。
  KD-Tree的分辨器根据不同的用途会有不同的分辨器,最普通的分辨器为:nmodk(树的根节点所在层为第0层,根结点孩子所在层为第1层,以此类推)  即:若它的左子树非空,则其左子树上所有结点的第i维值均小于其根结点的第i维值;
  若它的右子树非空,则其右子树上所有结点的第i维值均大于其根结点的第i维值;
并且它的左右子树也分别为KD-Tree。
2024/11/3 10:53:27 4KB KD-Tree
1
C#实现KD树建立,最近邻点搜索,采用BBF进行了K近邻搜索优化
2024/7/27 6:13:15 33KB c# KD树 K近邻搜索
1
看大小就知道很全啦查看地址https://blog.csdn.net/qq_43333395/article/details/98508424目录:数据结构:1.RMQ(区间最值,区间出现最大次数,求区间gcd)2.二维RMQ求区间最大值(二维区间极值)3.线段树模板(模板为区间加法)(线段树染色)(区间最小值)4.线性基(求异或第k大)5.主席树(静态求区间第k小)(区间中小于k的数量和小于k的总和)(区间中第一个大于或等于k的值)6.权值线段树(求逆序对)7.动态主席树(主席树+树状数组)(区间第k大带修改)8.树上启发式合并(查询子树的优化)9,树状数组模板(求区间异或和,求逆序对)扩展10.区间不重复数字的和(树状数组)11.求k维空间中离所给点最近的m个点,并按顺序输出(KD树)12.LCA(两个节点的公共父节点)动态规划:1.LIS(最长上升子序列)2.有依赖的背包(附属关系)3.最长公共子序列(LCS)4.树形DP5.状压DP-斯坦纳树6.背包7.dp[i]=min(dp[i+1]…dp[i+k]),multset博弈:1.NIM博弈(n堆每次最少取一个)2.威佐夫博弈(两堆每次取至少一个或一起取一样的)3.约瑟夫环4.斐波那契博弈(取的数依赖于对手刚才取的数)5.sg函数数论:1.数论素数检验:普通素数判别线性筛二次筛法求素数米勒拉宾素数检验2.拉格朗日乘子法(求有等式约束条件的极值)3.裂项(多项式分子分母拆分)4.扩展欧几里得(ax+by=c)5.勾股数(直角三角形三边长)6.斯特林公式(n越大越准确,求n!)7.牛顿迭代法(求一元多次方程一个解)8.同余定理(a≡b(modm))9.线性求所有逆元的方法求(1~pmodp的逆元)10.中国剩余定理(n个同余方程x≡a1(modp1))11.二次剩余((ax+k)2≡n(modp)(ax+k)^2≡n(modp)(ax+k)2≡n(modp))12.十进制矩阵快速幂(n很大很大的时候)13.欧拉函数14.费马小定理15.二阶常系数递推关系求解方法(a_n=p*a_{n-1}+q*a_{n-2})16.高斯消元17.矩阵快速幂18.分解质因数19.线性递推式BM(杜教)20.线性一次方程组解的情况21.求解行列式的逆矩阵,伴随矩阵,矩阵不全随机数不全组合数学:1.循环排列(与环有关的排列组合)计算几何:1.三角形(求面积))2.多边形3.三点求圆心和半径4.扫描线(矩形覆盖求面积)(矩形覆盖求周长)5.凸包(平面上最远点对)6.求凸多边形的直径7.求凸多边形的宽度8.求凸多边形的最小面积外接矩形9.半平面交图论:基础:前向星1.最短路(优先队列dijkstra)2.判断环(tarjan算法)3.最小生成树(Kruskal模板)4.最小生成树(Prim)5.Dicnic最大流(最小割)6.无向图最小环(floyd)7.floyd算法的动态规划(通过部分指定边的最短路)8.图中找出两点间的最长距离9.最短路(spfa)10.第k短路(spfa+A*)11.回文树模板12.拓扑排序(模板)13.次小生成树14.最小树形图(有向最小生成树)15.并查集(普通并查集,带权并查集,)16.求两个节点的最近公共祖先(LCA)17.限制顶点度数的MST(k度限制生成树)18.多源最短路(spfa,floyd)19.最短路(输出字典序最小)20.最长路图论题目简述字符串:1.字典树(多个字符串的前缀)2.KMP(关键字搜索)3.EXKMP(找到S中所有P的匹配)4.马拉车(最长回文串)5.寻找两个字符串的最长前后缀(KMP)6.hash(进制hash,无错hash,多重hash,双hash)7.后缀数组(按字典序排字符串后缀)8.前缀循环节(KMP的fail函数)9.AC自动机(n个kmp)10.后缀自动机小技巧:1.关于int,double强转为string2.输入输出挂3.低精度加减乘除4.一些组合数学公式5.二维坐标的离散化6.消除向下取整的方法7.一些常用的数据结构(STL)8.Devc++的使用技巧9.封装好的一维离散化10.Ubuntu对拍程序11.常数12.Codeblocks使用技巧13.java大数叮嘱共173页
2024/5/29 4:58:24 8.42MB ACM ICPC CCPC
1
在移动机器人同步定位与构图(SLAM)问题中,在大规模复杂环境下,由于传统数据关联算法的速度和正确率随着地图规模的增长而降低,导致难以满足实时性和鲁棒性的要求。
为提高定位性能,根据联合相容分支定界(JCBB)算法,提出了一种改进的IJCBB数据关联算法用于移动机器人同步定位优化控制。
首先建立地图的KD树模型,生成优化候选路标集,以缩小关联搜索空间,提升关联速度;其次构造增补关联规则,对JCBB算法的初步关联结果进行增补再关联,提升关联正确率。
仿真结果表明:IJCBB算法的关联速度和关联正确率均优于传统关联算法,具有较高的实时性和鲁棒性。
1
用matlab实现kd_treed代码,里面有详细的过程
2024/5/12 2:42:43 58KB matlab+kd-tree
1
实群900对讲机写频软件
2024/4/18 13:10:34 1.67MB 对讲机 写频软件 写频 软件
1
文档内对BBF算法原理进行了详细的说明,并附带源码以及源码解释
2024/3/27 3:23:46 9KB 代码及原理
1
C++实现KD树,本文采用C++语言实现了多维查找数据结构KD树
2023/11/26 16:46:57 389KB KD树
1
可以直接在TC运行,用模糊控制的方法调试KP、KI、KD参数
2023/9/13 16:11:47 16KB 模糊控制 PID控制 C程序
1
本科毕业设计,论文,word版摘要目前,由于PID具有结构简单,可通过调节比例积分和微分取得基本满意的控制性能,广泛应用在电厂的各种控制过程中。
电厂主汽温的被控对象是一个大惯性大迟延非线性且对象变化的系统。
常规汽温控制系统为串级PID控制或导前微分控制,当机组稳定运行时,一般能将主汽温控制在允许的范围内。
但当运行工况发生较大变化时,却很难保证控制品质。
因此本文研究BP神经网络的PID控制,利用神经网络的自学习、非线性和不依赖模型等特性实现PID参数的在线自整定,充分利用PID和神经网络的优点。
本处用一个多层前向神经网络,采用反向传播算法依据控制要求实时输出Kp、Ki、Kd,依次作为PID控制器的实时参数,代替传统PID参数靠经验的人工整定和工程整定,以达到对大迟延主气温系统的良好控制。
对这样一个系统在MATLAB平台上进行仿真研究,,仿真结果表明基于BP神经网络的自整定PID控制具有良好的自适应能力和自学习能力,对大迟延和变对象的系统可取得良好的控制效果。
关键词:主汽温,PID,BP神经网络,MATLAB仿真
2023/7/15 15:40:51 1.11MB 神经网络 PID 毕业设计
1
共 17 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡