resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5速度快,准确率高,参数不多50层残差网络模型,权重训练自ImageNet该模型在Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序模型的默认输入尺寸:224x224
2025/3/13 0:22:32 90.27MB resnet50 notop tf weights
1
李飞飞的imagenet数据库下构建的AlexNet代码,可以实现针对任意图片的准确率判别和目标的检测
2025/1/31 3:06:21 5KB imagenet AlexNet
1
数据集在IT行业中,特别是在机器学习和计算机视觉领域,扮演着至关重要的角色。
"各种病虫害的高清数据集"是一个专门针对农业病虫害识别的图像数据集,它包含了五个不同类别的高清图片,这些图片是jpg格式,非常适合用于训练和测试深度学习模型。
我们来详细了解一下数据集的概念。
数据集是模型训练的基础,它包含了一系列有标记的样本,这些样本用于训练算法学习特定任务的特征和模式。
在这个案例中,数据集中的每个样本都是一张病虫害的高清图片,可能包括农作物上的疾病症状或害虫。
这些图片经过分类,分别属于五个不同的类别,这意味着模型将需要学习区分这五种不同的病虫害类型。
在计算机视觉任务中,高清图片通常能提供更多的细节,有助于模型更准确地学习和理解图像特征。
jpg格式是一种常见的图像存储格式,它采用了有损压缩算法,能在保持图像质量的同时,减少文件大小,适合在网络传输和存储中使用。
对于这样的数据集,可以进行以下几种机器学习任务:1.图像分类:训练一个模型,输入一张病虫害图片,输出图片所属的类别。
例如,输入一张叶片有斑点的图片,模型应该能够判断出这是哪种病害。
2.目标检测:除了识别类别,还需要确定病虫害在图片中的位置,这要求模型能够定位并框出病虫害的具体区域。
3.实例分割:进一步细化目标检测,不仅指出病虫害的位置,还能精确到每个个体,这对于计算病虫害数量或者分析病害程度非常有用。
4.异常检测:训练模型识别健康的农作物图像,当出现病虫害时,模型会发出警报,帮助农民尽早发现并处理问题。
构建这样的模型通常涉及以下几个步骤:1.数据预处理:包括图片的缩放、归一化、增强(如翻转、旋转)等,目的是提高模型的泛化能力。
2.模型选择:可以使用经典的卷积神经网络(CNN),如AlexNet、VGG、ResNet等,或者预训练模型如ImageNet上的模型,再进行微调。
3.训练与验证:通过交叉验证确保模型不会过拟合,并调整超参数以优化性能。
4.测试与评估:在独立的测试集上评估模型的性能,常用的指标有准确率、召回率、F1分数等。
5.部署与应用:将训练好的模型部署到实际系统中,如智能手机APP或农田监控系统,实时识别并报告病虫害情况。
"各种病虫害的高清数据集"为开发精准的农业智能识别系统提供了基础,通过AI技术可以帮助农业实现智能化、精准化管理,提升农作物的产量和质量,对现代农业发展具有重要意义。
2024/11/22 10:52:17 840.11MB 数据集
1
imagenet_class_index.json
2024/10/4 4:29:53 35KB imagenet
1
从Gitbub下载的,外网下载速度10k+,好不容易下的,需要的请拿走。
在Keras上预训练的VGG16模型,基于ImageNet
2024/6/16 11:03:03 56.16MB 预训练模型
1
tensorflow训练之后的Inceptionv3模型,经过Imagenet数据得到的模型参数。
可以直接分类图片,或者经过Retrain实现迁移学习。
2024/4/27 1:39:56 84.87MB Inceptin_v3
1
vgg_imagenet.npyvggnet_fast_rcnn_iter_7000.ckpt因为github指示地址需要,我保存在百度网盘上的
2023/10/4 15:51:57 191B faster rcnn vgg_imagenet vggnet_faste
1
该资源为imagenet-vgg-verydeep-19.mat,可以在迁移学习的时候使用。
必须要补充字数,我就再补两句。
2023/9/25 5:06:01 549.36MB vgg19模型
1
实施与ImageNet-预训练ResNet50图像编码器和FC/FC-UpConv解码器变化:支持以视图为中心和以形状为中心的训练(以形状为中心的效果更好)同时支持倒角距离和土方距离,因为损耗(EMD速度较慢,但​​性能要好一些)训练10,000个地面真点可提高1K/2K训练的性能(这类似于最近基于SDF的方法,其中通常会采样>10,000个查询点)要使用,请先编译cd和emd(请参阅自述文件),然后运行bashtrain.sh要下载数据,请单击下载Chair数据(10K采样点云+24个随机视角的渲染图像)。
请注意,这是在PartNet数据拆分之后进行的。
您需要切换到其他论文中使用的那些。
在Ubuntu16.04,Cuda9.0,Python3.6.5,PyTorch1.1.0上测试了代码。
此代码使用Blenderv2.79渲
2023/9/13 16:11:43 290KB Python
1
imagenet-vgg-m-2048跑ECO的时候下载的,10k左右的速度下了一下午,现拿出分享给大家。
文本里面有百度云网盘链接和提取码,如果失效可私信我。
链接:https://pan.baidu.com/s/1WPTEX4-tCrRqr0ikNPQ9wQ提取码:inl1
2023/8/9 8:20:34 67B VGGnet tracking deep learnin
1
共 22 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡