MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
1
MATLAB代码经典功率谱估计,Welch法、协方差法、周期图、burg法及其对比,附完整注释
2025/5/2 12:11:43 2KB MATLAB 功率谱估计 Welch burg
1
burg算法估计功率谱,完全自编,没用matlab自带函数
2025/1/13 16:46:06 23KB burg 功率谱估计 matlab
1
AR模型功率谱估计burg算法matlab完整,直接可运行。
2024/11/29 7:03:27 2KB matlab AR模型功率
1
很不错的AR模型参数估计和阶数估计,是基于Burg法的,阶数的准则可以自己选择,有'FPE','AIC','MDL','CAT',还有功率谱估计
2024/7/22 17:05:13 6KB Burg AR
1
其中包括经典功率谱估计和现代功率谱估计方法自相关法,周期图法,batlet法,Welch法,Yule-walk法和Burg法并附有matlab程序
2023/12/12 2:23:24 338KB 功率谱估计方法 matlab仿真实现
1
本资源我自己编写的matlab程序,用于实现AR模型的参数估计,对于学习信号处理的朋友将有不少的帮助
2023/12/5 15:17:51 114KB matlab burg
1
C语言算法速查手册目录第1章 绪论 11.1 程序设计语言概述 11.1.1 机器语言 11.1.2 汇编语言 21.1.3 高级语言 21.1.4 C语言 31.2 C语言的优点和缺点 41.2.1 C语言的优点 41.2.2 C语言的缺点 61.3 算法概述 71.3.1 算法的基本特征 71.3.2 算法的复杂度 81.3.3 算法的准确性 101.3.4 算法的稳定性 14第2章 复数运算 182.1 复数的四则运算 182.1.1 [算法1] 复数乘法 182.1.2 [算法2] 复数除法 202.1.3 【实例5】复数的四则运算 222.2 复数的常用函数运算 232.2.1 [算法3] 复数的乘幂 232.2.2 [算法4] 复数的n次方根 252.2.3 [算法5] 复数指数 272.2.4 [算法6] 复数对数 292.2.5 [算法7] 复数正弦 302.2.6 [算法8] 复数余弦 322.2.7 【实例6】复数的函数运算 34第3章 多项式计算 373.1 多项式的表示方法 373.1.1 系数表示法 373.1.2 点表示法 383.1.3 [算法9] 系数表示转化为点表示 383.1.4 [算法10] 点表示转化为系数表示 423.1.5 【实例7】 系数表示法与点表示法的转化 463.2 多项式运算 473.2.1 [算法11] 复系数多项式相乘 473.2.2 [算法12] 实系数多项式相乘 503.2.3 [算法13] 复系数多项式相除 523.2.4 [算法14] 实系数多项式相除 543.2.5 【实例8】 复系数多项式的乘除法 563.2.6 【实例9】 实系数多项式的乘除法 573.3 多项式的求值 593.3.1 [算法15] 一元多项式求值 593.3.2 [算法16] 一元多项式多组求值 603.3.3 [算法17] 二元多项式求值 633.3.4 【实例10】 一元多项式求值 653.3.5 【实例11】 二元多项式求值 66第4章 矩阵计算 684.1 矩阵相乘 684.1.1 [算法18] 实矩阵相乘 684.1.2 [算法19] 复矩阵相乘 704.1.3 【实例12】实矩阵与复矩阵的乘法 724.2 矩阵的秩与行列式值 734.2.1 [算法20] 求矩阵的秩 734.2.2 [算法21] 求一般矩阵的行列式值 764.2.3 [算法22] 求对称正定矩阵的行列式值 804.2.4 【实例13】求矩阵的秩和行列式值 824.3 矩阵求逆 844.3.1 [算法23] 求一般复矩阵的逆 844.3.2 [算法24] 求对称正定矩阵的逆 904.3.3 [算法25] 求托伯利兹矩阵逆的Trench方法 924.3.4 【实例14】验证矩阵求逆算法 974.3.5 【实例15】验证T矩阵求逆算法 994.4 矩阵分解与相似变换 1024.4.1 [算法26] 实对称矩阵的LDL分解 1024.4.2 [算法27] 对称正定实矩阵的Cholesky分解 1044.4.3 [算法28] 一般实矩阵的全选主元LU分解 1074.4.4 [算法29] 一般实矩阵的QR分解 1124.4.5 [算法30] 对称实矩阵相似变换为对称三对角阵 1164.4.6 [算法31] 一般实矩阵相似变换为上Hessen-Burg矩阵 1214.4.7 【实例16】对一般实矩阵进行QR分解 1264.4.8 【实例17】对称矩阵的相似变换 1274.4.9 【实例18】一般实矩阵相似变换 1294.5 矩阵特征值的计算 1304.5.1 [算法32] 求上Hessen-Burg矩阵全部特征值的QR方法 1304.5.2 [算法33] 求对称三对角阵的全部特征值 1374.5.3 [算法34] 求对称矩阵特征值的雅可比法 1434.5.4 [算法35] 求对称矩阵特征值的雅可比过关法 1474.5.5 【实例19】求上Hessen-Burg矩阵特征值 1514.5.6 【实例20】分别用两种雅克比法求对称矩阵特征值 152第5章 线性代数方程组的求解 1545.1 高斯消去法 1545.1.1 [算法36] 求解复系数方程组的全选主元高斯消去法 1555.1.2 [算法37] 求解实系数方程组的全选主元高斯消去法 1605.1.3 [算法38] 求解复系数方程组的全选主元高斯-约当消去法 1635.1.4 [算法39] 求解实系数方程组的全选主元高斯-约当消去法 1685.1.5 [算法40] 求解大型
2023/10/26 14:13:36 218KB 算法速查
1
分别用Yule-Walker法、Burg法、协方差法进行AR模型的功率谱估计,并进行比较。
1
功率谱估量的Burg算法的MATLAB实现,自己编程实现的,现代信号处置陈教师的作业
2023/5/10 20:48:01 1KB Burg算法
1
共 13 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡