用c写的,数据经过8psk调制后,通过awgn信道,并对收到的数据进行解调和判决,最终计算了误比特率BER
2025/12/23 2:46:40 3KB c语言仿真 8psk awgn信道
1
智能天线技术是现代无线通信系统中的关键技术之一,特别是在多径传播环境下的移动通信系统中,它可以显著提高信号传输的质量和容量。
MATLAB作为一种强大的数值计算和仿真平台,被广泛用于智能天线的设计、分析和优化。
下面我们将深入探讨与"智能天线原书MATLAB程序"相关的知识点。
我们要理解什么是智能天线。
智能天线是指具有自适应算法的多元素天线阵列,能够根据接收信号的特性动态调整其辐射模式,以实现空间分集、空间多工或波束赋形等功能。
在无线通信中,这些功能可以增强信号强度、降低干扰、提高系统的频谱效率。
1.**空间分集**:通过多个天线元素接收信号的不同路径,智能天线可以利用多径效应来增加信号的多样性,从而提高通信的可靠性。
2.**空间多工**:智能天线能将多个独立的数据流同时发送到不同的用户,实现多用户复用,极大提升了无线通信系统的容量。
3.**波束赋形**:通过调整天线阵列的相位权重,智能天线可以形成指向特定方向的定向波束,减少非目标方向的辐射,提高能量利用率并降低干扰。
MATLAB在智能天线领域的应用主要体现在以下几个方面:1.**信号模型与仿真**:MATLAB可以构建各种无线通信信道模型,如瑞利衰落、莱斯衰落等,模拟实际通信环境,帮助设计和分析智能天线系统。
2.**自适应算法**:MATLAB支持多种自适应算法的实现,如最小均方误差(LMS)、快速傅里叶变换(FFT)基带处理、卡尔曼滤波等,这些算法用于调整天线阵列的相位权重,实现最佳性能。
3.**阵列处理**:MATLAB提供强大的矩阵运算和信号处理工具箱,可以进行天线阵列的馈电网络设计、相位校正以及波束形成算法的开发。
4.**性能评估**:通过MATLAB的仿真,可以对智能天线系统的性能进行量化评估,如误码率(BER)、符号错误率(SER)、信噪比(SNR)等关键指标。
5.**可视化**:MATLAB的图形化界面和绘图功能,可以帮助我们直观地展示波束形状、信道特性及系统性能,便于理解和优化。
"smartantenna"这个文件可能包含了与智能天线相关的MATLAB代码,可能包括信号生成、自适应算法实现、波束形成、性能评估等方面的实例。
通过对这些代码的学习和研究,我们可以更深入地理解智能天线的工作原理,并掌握如何使用MATLAB进行相关的设计和分析。
智能天线结合MATLAB的运用,为无线通信系统提供了强大的工具,有助于我们探索和实现高性能、高效率的无线通信解决方案。
通过学习和实践"智能天线原书MATLAB程序",我们可以提升自己在这一领域的理论知识和实践经验。
2025/12/19 19:36:10 79KB 智能天线 matlab
1
通过matlab仿真,将编码通过低通滤波器与升余弦滤波器,比较BER与SNR的关系,并与理想情况比较
2025/8/13 4:57:23 3KB BPSK matlab
1
matlab进行HARQ协议仿真,采用汉明码纠错编码,BPSK调制,分析BER和SNR的关系
2025/6/2 20:27:03 2KB matlab HARQ
1
从码字的非周期互相关函数出发,分析异步相干扩时光码分多址(OCDMA)系统的多址干扰(MAI)和差拍噪声(BN)。
干扰用户不同的传输时延,非周期互相关强度均值随之变化,差拍噪声和多址干扰也随之变化。
给出了差拍噪声和多址干扰与非周期互相关强度均值的关系,讨论了异步相干扩时OCDMA系统的误码率(BER)与非周期互相关强度均值的关系。
最后,以码长511的Gold码为例,针对干扰用户之间不同的传输时延,得到了异步相干扩时OCDMA系统的误码率上界与平均误码率性能。
在平均误码率情况下,OCDMA系统能支持12个干扰用户,而在最差情况下(误码率上界),系统容纳的干扰用户数不超过4个。
1
本文针对多输入多输出正交频分复用(MIMOOFDM)系统,提出了一种迭代决策导向信道估计算法。
该算法分为两部分:信道预测和信道估计。
信道预测的基本思想是使用自回归模型和信道的先验信息来预测信道状态。
然后,通过使用信道预测信息和接收信号来估计信道状态。
仿真结果表明,该方法可以提高信道估计的准确性,提高MIMO-OFDM系统的性能。
与传统的DDCE方法相比,当SNR为30时,迭代DD-CE方法的BER提升了近10%,估计精度提高了近2dB。
2024/12/15 5:22:46 256KB channel estimation MIMO-OFDM decision
1
OFDM-BER-BPSK的matlab%VinayMohanJonnakuti%WirelessCommunication:%BPSKmodulationanddemodulationwithincreasedbitrate%BPSKsimulationusingacarriercosinewavewithincreasedbitrateclc;closeall;clearall;
2024/11/12 5:09:34 39KB OFDM matlab
1
内含Digital_baseband_array.mDigital_baseband_awgn.mDigital_baseband_ber.mDigital_baseband_eye_pattern.mDigital_baseband_filterR.mDigital_baseband_filterT.mDigital_baseband_judgement.mDigital_baseband_noise.mDigital_baseband_noise_va.mDigital_baseband_sample.mDigital_baseband_send_signal.mshyx.msqrt_shyx.mdtft2.midft.m等子程序或函数
2024/11/11 12:02:02 7KB matlab
1
验证发射分集和接收分集性能1.理论分析上述两种分集技术的特性和实现原理2.基于Matlab仿真两种方案的BER性能曲线(BPSK调制)2×1的Alamouti空时码1×2的MRC接收分集3.在上述BER曲线结果中加入2×2Alamouti空时码性能曲线,并对各曲线进行对比分析。
2024/8/30 7:09:44 58KB 通信原理 matlab Alamouti mrc
1
直接运行脚本Simulation_Script_BER即可得到SCMA与ML两种调制解调方式的BER性能比较。
2024/6/4 18:31:56 12KB SCMA ML BER性能比较 调制
1
共 27 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡