https://download.csdn.net/download/qq_41739364/86339152
2025/2/20 2:46:17 2.08MB python
1
非下采样Contourlet变换(NonsubsampledContourletTransform,NSCT)是一种多分辨率分析方法,它结合了小波变换的多尺度特性与Contourlet变换的方向敏感性。
NSCT在图像处理和计算机视觉领域有广泛的应用,如图像压缩、图像增强、噪声去除和图像分割等。
这个“NSCT变换的工具箱”提供了实现NSCT算法的软件工具,对于研究和应用NSCT的人来说,是一个非常实用的资源。
非下采样Contourlet变换的核心在于其能够提供多方向、多尺度的图像表示。
与传统的Contourlet变换相比,NSCT不进行下采样操作,这避免了信息损失,保持了图像的原始分辨率。
这种特性使得NSCT在处理高分辨率图像时具有优势,特别是在保留细节信息方面。
NSCT工具箱通常包含以下功能:1.**NSCT变换**:对输入图像执行非下采样Contourlet变换,将图像分解为多个方向和尺度的系数。
2.**逆NSCT变换**:将NSCT系数重构回原始图像,恢复图像的完整信息。
3.**图像压缩**:利用NSCT的系数对图像进行编码,实现高效的图像压缩。
由于NSCT在高频部分有更好的表示能力,因此在压缩过程中可以有效减少冗余信息,提高压缩比。
4.**图像增强**:通过调整NSCT系数,可以对图像进行有针对性的增强,比如增强边缘或抑制噪声。
5.**噪声去除**:利用NSCT的多尺度和方向特性,可以有效地分离噪声和信号,实现图像去噪。
6.**图像分割**:在NSCT域中,图像的特征更加明显,有助于进行图像区域划分和目标检测。
该工具箱可能还包括一些辅助函数,如可视化NSCT系数、性能评估、参数设置等功能,方便用户进行各种实验和分析。
使用这个工具箱,研究人员和工程师可以快速地实现NSCT相关的算法,并在实际项目中进行测试和优化。
在使用NSCT工具箱时,需要注意以下几点:-输入图像的尺寸需要是2的幂,因为大多数NSCT实现依赖于离散小波变换,而DWT通常要求输入尺寸为二进制幂。
-工具箱可能需要用户自行配置或安装依赖库,例如MATLAB的WaveletToolbox或其他支持小波运算的库。
-NSCT变换的计算复杂度相对较高,特别是在处理大尺寸图像时,可能需要较长的计算时间。
-在处理不同类型的图像时,可能需要调整NSCT的参数,如方向滤波器的数量、分解层数等,以获得最佳性能。
"NSCT变换的工具箱"是一个强大的资源,对于那些希望探索非下采样Contourlet变换在图像处理中的潜力的人来说,这是一个必不可少的工具。
通过深入理解和熟练使用这个工具箱,可以进一步发掘NSCT在各种应用中的价值。
2025/2/20 0:32:26 132KB NSCT工具箱
1
contourlet工具箱matlab,不是太好找
2024/10/31 8:24:56 4.44MB contourlet
1
Matlab中应用Contourlet变换对图像进行去噪处理源代码
2024/2/17 5:21:26 455KB Contourlet
1
NSCT方法是由传统的contourlet变化改进而来,contourlet变化是用轮廓段的基结构来对图像的直线奇异和曲线奇异进行逼近检测,但其融合后的图像不具有平移不变性,没有很好的消除混频现象以及吉布斯现象。
而本文提出的NSCT不但保留了contourlet变化的多尺度,多方向,各向异性等优点,在图像分解时采用来非下采样形式剪切波变换能够很好的避免图像由于分解与重构带来的细节丢失,更重要的是分解后的图像与原图像大小相同,因此能够更好的完整描述图像的方向性和特征。
2024/1/22 22:43:34 95KB 融合技术
1
第1章绪论1.1合成孔径雷达概况1.2发展历程1.2.1国外SAR发展历程1.2.2我国SAR发展历程1.3发展趋势1.4主要应用1.4.1军事领域1.4.2民用领域1.5内容安排第2章合成孔径雷达2.1概述2.2SAR成像基本原理2.2.1距离向分辨率与脉冲压缩技术2.2.2方位向分辨率与合成孔径原理2.2.3点目标信号回波模型2.2.4SAR成像处理与算法2.3SAR成像的几何特性2.3.1斜距图像的比例失真2.3.2透视收缩与顶底位移2.3.3雷达阴影2.3.4雷达视差与立体观察第3章雷达目标电磁散射计算3.1概述3.1.1电磁散射基本计算方法3.1.2严格的经典解法3.1.3近似求解方法3.2等效电磁流计算3.2.1等效电磁流奇异性的消除3.2.2等效电磁流的分析与计算3.3多次散射的计算3.3.1几何/物理光学混合算法3.3.2存在多重散射的条件和遮挡关系的判断3.3.3几何光学/等效电磁流混合算法3.3.4GO/PO混合方法的应用3.4腔体结构电磁散射RCS计算3.4.1复射线近轴近似电磁散射算法3.4.2计算实例3.5复杂目标电磁散射的计算3.5.1复杂目标几何建模3.5.2复杂目标电磁散射混合计算第4章合成孔径雷达图像特征分析4.1概述4.2SAR图像辐射特征4.2.1SAR图像回波强度的概率分布4.2.2辐射分辨率4.3SAR图像噪声特征4.4SAR图像目标几何特征4.4.1点目标4.4.2线目标4.4.3面目标4.5SAR图像灰度统计特征4.5.1幅度特征4.5.2直方图特征4.5.3统计特征4.6SAR图像纹理特征4.6.1方向差分特征4.6.2灰度共现特征4.6.3小波纹理能量特征第5章合成孔径雷达图像分割5.1概述5.2阈值分割法5.2.1基于遗传算法的二维最大熵阈值分割法5.2.2二维模糊熵阈值分割法5.2.3双阈值分割算法5.3基于马尔可夫随机场模型的分割法5.3.1吉布斯MEF分割模型5.3.2吉布斯MRF分割算法5.3.3多尺度MRF图像分割5.4基于多尺度几何分析的分割法5.4.1基于Contourlet变换的SAR图像分割5.4.2基于Wedgelet变换的SAR图像分割5.5分割评价方法5.5.1分割质量评价5.5.2适用情况分析第6章合成孔径雷达图像目标分类6.1概述6.1.1分类流程6.1.2评价标准6.2概率密度函数估计6.2.1单-密度函数6.2.2混合密度函数6.2.3有限混合密度函数的逼近能力6.3参数估计6.3.1极大似然估计6.3.2EM算法6.4最小距离分类法6.5最大后验概率分类法6.6支持向量机分类法6.6.1支持向量机原理6.6.2支持向量机分类法6.7隐马尔可夫优化分类法6.7.1HMM原理6.7.2HMOC模型第7章合成孔径雷达图像目标识别7.1概述7.1.1识别方法7.1.2自动目标识别系统7.2基于电磁特性的目标识别7.3典型目标识别7.3.1道路识别7.3.2机场识别7.3.3MSTAR坦克识别第8章合成孔径雷达图像融合8.1概述8.1.1图像融合概念8.1.2融合效果评价8.2SAR图像与可见光图像融合8.2.1提升小波变换8.2.2基于提升小波变换区域统计特性的融合算法8.3SAR图像与多光谱图像融合8.3.1主成分分析方法8.3.2基于主成分分析的SAR与多光谱图像融合8.4多波段SAR图像融合8.4.1基于atrous算法方向滤波器组的多波段SAR图像灰度融合8.4.2多波段SAR图像伪彩色融合第9章合成孔径雷达图像压缩9.1概述9.1.1第一代和第二代压缩技术9.1.2多尺度方向分析技术9.2SAR图像压缩中的典型特征9.2.1纹理特征9.2.2变换域系数统计特征9.3SAR图像Non-SWMDA压缩方法9.3.1不可分离小波的提升实现9.3.2基于块分割的二叉树编码方案设计9.4SAR图像压缩效果评价9.4.1保真度准则9.4.2特征衡量标准
2023/10/25 11:11:44 43.18MB 合成孔径雷达 雷达成像 SAR成像
1
contourlet为近几年由小波变换衍生而来的新技术,成为第三代小波技术。
此文章,简明扼要介绍了以轮廓波变换为核心的去噪算法,即先将图像经过轮廓变换分解,再由此得到相关系数估算阈值,通过阈值进行去噪与特征保留。
轮廓波相对小波对图像奇异点有更好的逼近检测性。
2023/10/4 18:11:43 1.14MB contourlet 阈值去噪
1
Contourlet工具箱2.0版本,由EPFL大学编写,主要的函数调用在文件contourlettoolbox.doc中有具体说明。
只适合N*N的图像,可以在64位Matlab下运行。
2023/9/20 13:01:18 466KB 轮廓提取 Contourlet Toolbox
1
程序包含基于WAVELET域、基于CONTOURLET域、基于WAVELET-CONTOURLET域及PCA的SAR图像去噪
2023/9/1 23:14:16 78KB SAR图像去噪
1
用contourlet变换的nsct改进算法的图像处理,代码中哟实例,可以加以参考
2023/8/7 23:43:47 97KB nsct matlab
1
共 22 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡