卷积神经网络的权值优化算法
2024/12/24 7:01:18 377KB 卷积神经网络 CNNS 神经网络
1
WelcometoLongShort-TermMemoryNetworksWithPython.LongShort-TermMemory(LSTM)recurrentneuralnetworksareoneofthemostinterestingtypesofdeeplearningatthemoment.Theyhavebeenusedtodemonstrateworld-classresultsincomplexproblemdomainssuchaslanguagetranslation,automaticimagecaptioning,andtextgeneration.LSTMsareverydi↵erenttootherdeeplearningtechniques,suchasMultilayerPerceptrons(MLPs)andConvolutionalNeuralNetworks(CNNs),inthattheyaredesignedspecificallyforsequencepredictionproblems.IdesignedthisbookforyoutorapidlydiscoverwhatLSTMsare,howtheywork,andhowyoucanbringthisimportanttechnologytoyourownsequencepredictionproblems.
2024/6/10 13:38:01 6.77MB machine lear mastery python
1
Deeplearningsimplifiedbytakingsupervised,unsupervised,andreinforcementlearningtothenextlevelusingthePythonecosystemTransferlearningisamachinelearning(ML)techniquewhereknowledgegainedduringtrainingasetofproblemscanbeusedtosolveothersimilarproblems.Thepurposeofthisbookistwo-fold;firstly,wefocusondetailedcoverageofdeeplearning(DL)andtransferlearning,comparingandcontrastingthetwowitheasy-to-followconceptsandexamples.Thesecondareaoffocusisreal-worldexamplesandresearchproblemsusingTensorFlow,Keras,andthePythonecosystemwithhands-onexamples.ThebookstartswiththekeyessentialconceptsofMLandDL,followedbydepictionandcoverageofimportantDLarchitecturessuchasconvolutionalneuralnetworks(CNNs),deepneuralnetworks(DNNs),recurrentneuralnetworks(RNNs),longshort-termmemory(LSTM),andcapsulenetworks.Ourfocusthenshiftstotransferlearningconcepts,suchasmodelfreezing,fine-tuning,pre-trainedmodelsincludingVGG,inception,ResNet,andhowthesesystemsperformbetterthanDLmodelswithpracticalexamples.Intheconcludingchapters,wewillfocusonamultitudeofreal-worldcasestudiesandproblemsassociatedwithareassuchascomputervision,audioanalysisandnaturallanguageprocessing(NLP).Bytheendofthisbook,youwillbeabletoimplementbothDLandtransferlearningprinciplesinyourownsystems.WhatyouwilllearnSetupyourownDLenvironmentwithgraphicsprocessingunit(GPU)andCloudsupportDelveintotransferlearningprincipleswithMLandDLmodelsExplorevariousDLarchitectures,includingCNN,LSTM,andcapsulenetworksLearnaboutdataandnetworkrepresentationandlossfunctionsGettogripswithmodelsandstrategiesintransferlearningWalkthroughpotentialchallengesinbuildingcomplextransferlearningmodelsfromscratchExplorereal-worldresearchproblemsrelatedtocompute
2023/12/27 0:34:49 46.15MB Transfer Lea Python
1
深度学习的不雅点源于家养神经收集的钻研。
含多隐层的多层感知器便是一种深度学习结构。
深度学习经由组合低层特色组成愈加笼统的高层展现属性种别或者特色,以发现数据的漫衍式特色展现。
深度学习的不雅点由Hinton等人于2006年提出。
基于深信度网(DBN)提出非把守贪心逐层熬炼算法,为处置深层结构相关的优化难题带来阻滞,随后提出多层自动编码器深层结构。
另外Lecun等人提出的卷积神经收集是第一个真正多层结构学习算法,它行使空间相对于关连削减参数数目以普及熬炼成果。
深度学习是机械学习钻研中的一个新的规模,其成果在于建树、模拟人脑举行阐发学习的神经收集,它模拟人脑的机制来评释数据,譬如图像,声音以及文本。
同机械学习方式同样,深度机械学习方式也有把守学习与无把守学习之分.不合的学习框架下建树的学习模子颇为不合.譬如,卷积神经收集(Convolutionalneuralnetworks,简称CNNs)便是一种深度的把守学习下的机械学习模子,而深度信托网(DeepBeliefNets,简称DBNs)便是一种无把守学习下的机械学习模子。
2023/4/8 19:20:38 107KB 人工智能
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡