adaboost算法Matlab代码及训练数据,非常实用
2024/11/3 13:33:57 280KB adaboost
1
用C语言实现的基于adaboost算法的人脸检测程序及人脸库
2024/8/22 22:38:55 20.45MB adaboost 人脸检测 C 程序
1
这个案例是基于sklearn机器学习库中的SVM和AdaBoost算法对MINIST数据集中的手写体数字进行识别的。
有需要的朋友可以下载一下,欢迎批评指正,一起进步。
本来想免积分的,但是csdn不让啊。


2024/7/16 4:36:50 178KB HandWritten MINIST SVM AdaBoost
1
人脸检测作为物体检测问题的一个特例,长期以来一直备受关注,已经开始广泛应用到全新人机界面、基于内容的检索、基于目标的视频压缩、数字视频处理、视觉监测等许多领域。
本论文研究的是如何准确地在复杂背景的灰度或彩色图像中测人脸,同时验证了结合肤色等多种信息融合的方法是提高检测速度的有效途径之一。
利用目前较为流行的AdaBoost算法的一个改进算法——GentleAdaBoost算法,设计实现了以这个算法为核心的快速人脸检测系统,系统分训练和检测两部分,训练的最终目的就是得到一多层分类器结构,人脸检测的效率和检测速度在很大程度上是由这种结构形式决定的。
通过一系列的比较得出样本选取、特征选取、核心算法等很多因素影响着多层分类器的结构形式。
2024/6/24 19:03:18 1.38MB bp神经网络 人脸肤色定位
1
【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
adaboost算法是一个由多个弱分类器生成一个强分类器的算法,可以提高分类的正确率,这里利用adaboost算法的原理,结合matlab做了一个简单的实例里面h1-h8为八个弱分类器,adaboost为训练的主函数,test调用了训练函数,对一个样本进行测试,calerr计算每次循环后的错误频率
2024/4/22 10:57:32 4KB adaboost matlab XOR
1
这里不光包含AdaBoost算法本身的实现,而且还有利用特征模板从人脸提取特征值的代码,可以让大家轻松掌握AdaBoost用于人脸识别的全过程。
其实设计模板(Haar特征)并提取特征值是整个过程中最累的环节。
2024/1/12 21:29:04 88KB 模式识别源代码
1
为了提升自然场景图像的识别精度,结合bag-of-visualword模型,提出了一种基于核稀疏表示的图像识别方法。
该方法的图像描述部分主要利用核稀疏表示在高维度空间进行图像特征的匹配表示,识别部分采用AdaBoost分类器,对各个类别编码并在对应的核矩阵上进行划分,从而实现多类场景图像的识别能力。
实验结果表明,该方法有效的提升了图像描述的准确度与对自然场景图像识别的精度。
1
Adaboost算法简介
2023/9/19 12:46:38 66KB Adaboost算法
1
实时的人脸检测体系,AdaBoost算法是现今流行的人脸检测算法之一。
2023/3/25 14:22:53 2.78MB 人脸检测,AdaBoost,实时检测
1
共 18 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡