包括以下方面:1.新建一幅图像,或者打开、保存、关闭和退出等功能。
2.对图像进行复制、粘贴、剪切、全选、取消选择和翻转。
其中翻转包括水平翻转和垂直翻转。
3.过滤图像,包括锐化、浮雕、腐蚀、风化。
4对图像进行滤波处理:包括最小值滤波处理、最大值滤波处理和中值处理。
5.对彩色图像进行变换:包括彩色转灰度、彩色转黑白、平滑处理、霓红处理。
6.软化图像,包括红色、绿色、橙色;
硬化图像,包括红色、绿色、蓝色。
7.对图像进行卷积处理,包括水平增强、垂直增强和双向增强。
8.对图像进行边缘探测,例如右下边缘抽出,拉普拉斯(8邻域)。
9.给图像进行对比度增强,进行FFT分析,以及对两幅图像进行合成。
工具栏中的功能主要体现在工具中,正如平时画图工具的工具一样,可以选择一定的区域,放大图像、画圆、画方,输入文字、剪切一定的区域,简单的渐变等。
2025/6/14 3:05:51 970KB 图像处理 photoshop
1
主要功能是:打开图像彩色变灰阶邻域平均选择阈值腐蚀图像缩小启动摄像头恢复图像图像反相Gauss滤波自适应阈值法膨胀径向梯度打开AVI文件关闭当前窗口垂直镜像中值滤波全局阈值法开运算Canny算法视频解冻保存当前位图水平镜像Sobel算法外接矩形闭运算种子填充视频冻结最近文件180度旋转Laplace算法最小面积矩形形态学梯度金字塔图像分割多图像平均恢复原始图像30度旋转点集凸包顶帽变换椭圆曲线拟合关闭视频当前画面存盘亮度变换区域凸包波谷检测Snake原理选择分辨率退出图像直方图轮廓跟踪分水岭原理动态边缘检测直方图均衡化距离变换角点检测L_K光流跟踪
2025/4/28 10:16:08 7.98MB MFC opencv
1
[原创]自己实现的FPFH算法,效果与PCL中的完全一致。
输入量必须包括离散无拓扑的点云矩阵、点云法向量矩阵、关键点在离散点云中的位置向量、邻域参数这么四个,另外两个量可缺省,填入ISS算法(资源已放出)步骤中用到的r邻域拓扑变量时可以节省运算资源。
输出量为一个矩阵,其中每一行为一个33维度向量,对应一个关键点的FPFH描述符。
个人比较满意的作品,代码变量命名规范、逻辑清晰、可读性强。
2025/4/22 19:46:34 2KB FPFH 三维点云 三维特征提取 matlab
1
独立分量分析是一类多通道信号分解方法,是信号处理技术研究邻域的一项前沿热点。
2025/3/29 17:53:47 19.45MB ICA
1
基于邻域超图的不平衡数据分类新算法
2025/3/1 1:31:35 1.37MB 研究论文
1
针对维吾尔文手写体文本中行分割问题,本文基于连通域大小将图像中文字分为三类,提出了自适应涂抹细化算法,对主体文本行进行定位;
并对第三类连通域中相邻两文本行间粘连的字符进行切割;
此外,利用重心范围内的邻域搜索算法,解决了剩余笔画的文本行归附问题。
实验结果表明,本文方法与常见的水平投影法,分段投影法,及涂抹方法相比具有更好的分割效果。
1
简单有效的邻域搜索策略的粒子群优化
2024/11/21 16:41:45 293KB 研究论文
1
这个Matlab工具箱实现32种维数降低技术。
这些技术都可以通过COMPUTE_MAPPING函数或trhoughGUI。
有以下技术可用: -主成分分析('PCA') -线性判别分析('LDA') -多维缩放('MDS') -概率PCA('ProbPCA') -因素分析('因子分析') -Sammon映射('Sammon') -Isomap('Isomap') -LandmarkIsomap('LandmarkIsomap') -局部线性嵌入('LLE') -拉普拉斯特征图('Laplacian') -HessianLLE('HessianLLE') -局部切线空间对准('LTSA') -扩散图('DiffusionMaps') -内核PCA('KernelPCA') -广义判别分析('KernelLDA') -随机邻居嵌入('SNE') -对称随机邻接嵌入('SymSNE') -t分布随机邻居嵌入('tSNE') -邻域保留嵌入('NPE') -线性保持投影('LPP') -随机接近嵌入('SPE') -线性局部切线空间对准('LLTSA') -保形本征映射('CCA',实现为LLE的扩展) -最大方差展开('MVU',实现为LLE的扩展) -地标最大差异展开('地标MVU') -快速最大差异展开('FastMVU') -本地线性协调('LLC') -歧管图表('ManifoldChart') -协调因子分析('CFA') -高斯过程潜变量模型('GPLVM') -使用堆栈RBM预训练的自动编码器('AutoEncoderRBM') -使用进化优化的自动编码器('AutoEncoderEA')此外,工具箱包含6种内在维度估计技术。
这些技术可通过INTRINSIC_DIM函数获得。
有以下技术可用: -基于特征值的估计('EigValue') -最大似然估计器('MLE') -基于相关维度的估计器('CorrDim') -基于最近邻域评估的估计器('NearNb') -基于包装数量('PackingNumbers')的估算器 -基于测地最小生成树('GMST')的估计器除了这些技术,工具箱包含用于预白化数据(函数PREWHITEN),精确和估计样本外扩展(函数OUT_OF_SAMPLE和OUT_OF_SAMPLE_EST)的函数以及生成玩具数据集(函数GENERATE_DATA)的函数。
工具箱的图形用户界面可通过DRGUI功能访问
2024/9/5 12:27:19 1.06MB matlab,降维
1
邻域搜索,K邻域获取,法矢量计算、八叉树点云压缩
2024/8/17 16:57:13 3.88MB 八叉树 点云压缩
1
研究了实时高精度激光光斑检测方法。
利用高帧频、高灵敏度CCD采集14位激光光斑视频;
分析了激光光斑的特征,在使用阈值分割出光斑区域后,通过上三邻域连续点计数算法检测了激光光斑区域;
分析了激光光斑中余光斑存在的原因,利用平均阈值法滤除了余光斑,在剩余的主光斑中计算获得了更为精确的光斑中心(含质心与形心),制定了以参考帧为基准的视频帧序列的操作序列法光斑检测流程,解决了传统相邻帧相减法无法检测逆光斑帧及光斑中心位置不同的连续相邻光斑帧的问题。
实验结果表明,算法可实践用于在线实时与离线实时的高精度激光光斑检测。
1
共 65 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡