录音程序,可在DEC++或vc++6.0编译环境下成功运行部分代码:intmain(){creat_file();//新建文件,原文件数据被删除RecordWave();//录音函数simplest_pcm16le_to_wave("NocturneNo2inEflat_44.1k_s16le.pcm",1,44100,"output_nocture.wav");//将二进制录音信息从内存中提取,并生成wav文件测控1602DEVC++环境下控制台应用程序善解人意成员:王帅、赵永玻、侯雅茹3return0;}voidRecordWave(){intcount=waveInGetNumDevs();//检测录音设备printf("\n音频输入数量:%d\n",count);WAVEINCAPSwaveIncaps;MMRESULTmmResult=waveInGetDevCaps(0,&waveIncaps;,sizeof(WAVEINCAPS));printf("\n音频输入设备:%s\n",waveIncaps.szPname);if(MMSYSERR_NOERROR==mmResult){//HWAVEINphwi;WAVEFORMATEXpwfx;//录音格式指针WaveInitFormat(&pwfx;,//波形声音的格式,单声道双声道使用WAVE_FORMAT_PCM.当包含在WAVEFORMATEXTENSIBLE结构中时,使用WAVE_FORMAT_EXTENSIBLE1,//声道数量44100,//采样率16//采样位数);printf("\n正在打开音频输入设备");printf("\n采样参数:声道44.1kHz16bit\n");mmResult=waveInOpen(&phwi;,WAVE_MAPPER,&pwfx;,(DWORD)(MicCallback),NULL,CALLBACK_FUNCTION);//3if(MMSYSERR_NOERROR==mmResult){//WAVEHDRpwh1;charbuffer1[10240];pwh1.lpData=buffer1;pwh1.dwBufferLength=10240;pwh1.dwUser=1;pwh1.dwFlags=0;测控1602DEVC++环境下控制台应用程序善解人意成员:王帅、赵永玻、侯雅茹4mmResult=waveInPrepareHeader(phwi,&pwh1;,sizeof(WAVEHDR));//为波形输入设备准备缓冲区printf("\n准备缓冲区1");//WAVEHDRpwh2;charbuffer2[10240];pwh2.lpData=buffer2;pwh2.dwBufferLength=10240;pwh2.dwUser=2;pwh2.dwFlags=0;mmResult=waveInPrepareHeader(phwi,&pwh2;,sizeof(WAVEHDR));//为波形输入设备准备缓冲区printf("\n准备缓冲区2\n");//WAVEHDRpwh3;charbuffer3[10240];pwh3.lpData=buffer3;pwh3.dwBufferLength=10240;pwh3.dwUser=3;pwh3.dwFlags=0;mmResult=waveInPrepareHeader(phwi,&pwh3;,sizeof(WAVEHDR));//为波形输入设备准备缓冲区printf("准备缓冲区3\n");if(MMSYSERR_NOERROR==mmResult){mmResult=waveInAddBuffer(phwi,&pwh1;,sizeof(WAVEHDR));//给输入设备增加一个缓存printf("\n将缓冲区1加入音频输入设备");mmResult=waveInAddBuffer(phwi,&pwh2;,sizeof(WAVEHDR));//给输入设备增加一个缓存printf("\n将缓冲区2加入音频输入设备\n");mmResult=waveInAddBuffer(phwi,&pwh3;,sizeof(WAVEHDR));//给输入
2025/8/20 13:54:12 332KB C语言 录音程序
1
本书以目前使用最为广泛的80X86机为例,详细介绍了使用宏汇编语言进行程序设计的理论、方法和技巧。
全书共分7章,主要内容包括:80X86宏汇编语言、程序设计的基本技术和模块化程序设计技术、输入/输出、中断异常和WIN32程序设计,同时还介绍了在DOS和Windows环境下调试、运行32位段与16位段汇编源程序的方法,每章后面均附有丰富的习题.
2025/8/20 8:12:15 4.59MB 80X86 汇编语言
1
第1篇基础篇第1章Web安全简介第2章深入HTTP请求流程第3章信息探测第4章漏洞扫描第2篇原理篇第5章SQL注入漏洞第6章上传漏洞第7章XSS跨站脚本漏洞第8章命令执行漏洞第9章文件包含漏洞第10章其他漏洞第3篇实战篇第11章实战入侵与防范第4篇综合篇第12章暴力破解测试第13章旁注攻击第14章提权第15章ARP欺骗攻击第16章社会工程学
2025/8/19 4:53:01 54.16MB Web安全 网络安全
1
本代码实现了24位BMP图片转565格式16位数组C文件,用法:24to16filename.bmp生成:16filename.bmp生成的16filename.bmp只能用附件中的“画图”打开!
2025/8/17 21:31:08 172KB 24位BMP 转16位 565格式
1
操作系统试卷。
打印出来很清晰,涉及到具体题型,每次考试应该不会差很多
2025/8/17 12:24:09 14.96MB 操作系统
1
书名:无线通信基础原书名:FundamentalsofWirelessCommunication原出版社:CambridgeUniversityPress分类:电子电气>>通信作者:DavidTse,PramodViswanath译者:李锵周进等译;
马晓莉审校出版日期:2007-06-30语种:简体中文开本:16开页数:440定价:59.00元人民币目录第1章绪论11.1本书目标11.2无线系统21.3本书结构4第2章无线信道72.1无线信道的物理建模72.1.1自由空间、固定发射天线与接收天线82.1.2自由空间、运动天线92.1.3反射墙、固定天线102.1.4反射墙、运动天线112.1.5地平面反射122.1.6由距离和阴影引起的功率衰减132.1.7运动天线、多个反射体142.2无线信道的输入/输出模型142.2.1无线信道的线性时变系统142.2.2基带等效模型162.2.3离散时间基带模型182.2.4加性白噪声212.3时间相干与频率相干222.3.1多普勒扩展与相干时间222.3.2时延扩展与相干带宽232.4统计信道模型252.4.1建模基本原理252.4.2瑞利衰落与莱斯衰落262.4.3抽头增益自相关函数272.5文献说明312.6习题31第3章点对点通信:检测、分集与信道不确定性363.1瑞利衰落信道中的检测363.1.1非相干检测363.1.2相干检测393.1.3从BPSK到QPSK:自由度研究413.1.4分集433.2时间分集443.2.1重复编码443.2.2超越重复编码473.3天线分集523.3.1接收分集533.3.2发射分集:空时码543.3.3MIMO:一个2×2实例563.4频率分集613.4.1基本概念613.4.2具有ISI均衡的单载波623.4.3直接序列扩频673.4.4正交频分多路复用703.5信道不确定性的影响753.5.1直接序列扩频的非相干检测763.5.2信道估计773.5.3其他分集方案793.6文献说明813.7习题81第4章蜂窝系统:多址接入与干扰管理884.1概述884.2窄带蜂窝系统904.2.1窄带分配:GSM系统914.2.2对网络和系统设计的影响924.2.3对频率复用的影响934.3宽带系统:CDMA944.3.1CDMA上行链路954.3.2CDMA下行链路1054.3.3系统问题1064.4宽带系统:OFDM1074.4.1分配设计原理1084.4.2跳频模式1094.4.3信号特征与接收机设计1104.4.4扇区化1114.5文献说明1124.6习题113第5章无线信道的容量1215.1AWGN信道容量1215.1.1重复编码1225.1.2填充球体1225.2AWGN信道的资源1255.2.1连续时间AWGN信道1255.2.2功率与带宽1265.3线性时不变高斯信道1305.3.1单输入多输出(SIMO)信道1305.3.2多输入单输出(MISO)信道1315.3.3频率选择性信道1315.4衰落信道的容量1365.4.1慢衰落信道1365.4.2接收分集1385.4.3发射分集1405.4.4时间分集与频率分集1435.4.5快衰落信道1465.4.6发射端信息1495.4.7频率选择性衰落信道1565.4.8总结:观点的转变1565.5文献说明1585.6习题159第6章多用户容量与机会通信1676.1上行链路AWGN信道1686.1.1逐行干扰消除获得的容量1686.1.2与传统CDMA的比较1706.1.3与正交多址接入的比较1716.1.4一般K用户上行链路容量1726.2下行链路AWGN信道1736.2.1对称情况:获取容量的两种方案1746.2.2一般情况:叠加编码获取容量1766.3上行链路衰落信道1796.3.1慢衰落信道1796.3.2快衰落信道1806.3.3完整的信道辅助信息1826.4下行链路衰落信道18
1
包含:freetype-2.4.0.tar.bz2,jpegsrc.v9.tar.gz,zlib-1.2.8.tar.gz,libpng-1.6.16.tar.gz,gd-2.0.33.tar.gz安装PHP的gd扩展依赖库之一,安装步骤参考:https://blog.csdn.net/u014740338/article/details/80471655
2025/8/14 9:28:34 4.71MB php freetype
1
加密算法在信息技术领域中起着至关重要的作用,用于保护数据的安全性和隐私性。
SHA(SecureHashAlgorithm)是一种广泛使用的散列函数,它将任意长度的数据转换为固定长度的摘要值。
SHA512是SHA家族中的一员,提供更强大的安全性能,尤其适合大数据量的处理。
本文将深入探讨SHA512加密算法的原理、C++实现以及其在实际应用中的重要性。
SHA512算法基于密码学中的消息摘要思想,通过一系列复杂的数学运算(如位操作、异或、循环左移等),将输入数据转化为一个512位的二进制数字,通常以16进制形式表示,即64个字符。
这个过程是不可逆的,意味着无法从摘要值推导出原始数据,因此被广泛应用于数据完整性验证和密码存储。
在C++中实现SHA512算法,首先需要理解其基本步骤:1.**初始化**:设置一组初始哈希值(也称为中间结果)。
2.**预处理**:在输入数据前添加特殊位和填充,确保数据长度是512位的倍数。
3.**主循环**:将处理后的数据分成512位块,对每个块进行多次迭代计算,每次迭代包括四个步骤:扩展、混合、压缩和更新中间结果。
4.**结束**:将最后一个中间结果转换为16进制字符串,即为SHA512的摘要值。
C++代码实现时,可以使用位操作、数组和循环来完成这些计算。
为了简化,可以使用`#include`中的`uint64_t`类型表示64位整数,因为SHA512处理的是64位的数据块。
同时,可以利用`#include`中的`memcpy`和`memset`函数来处理内存操作。
此外,`#include`和`#include`库可用于将二进制数据转换成16进制字符串。
以下是一个简化的C++SHA512实现框架:```cpp#include#include#include#include#include//定义常量和初始化哈希值conststd::arraykInitialHashValues{...};std::arrayhashes=kInitialHashValues;//主循环函数voidProcessBlock(constuint8_t*data){//扩展、混合、压缩和更新中间结果}//输入数据的处理voidPreprocess(conststd::string&input){//添加填充和特殊位}//将摘要转换为16进制字符串std::stringDigestToHex(){//转换并返回16进制字符串}//使用示例std::stringmessage="Hello,World!";Preprocess(message);constuint8_t*data=reinterpret_cast(message.c_str());size_tdataSize=message.size();while(dataSize>0){if(dataSize>=128){ProcessBlock(data);dataSize-=128;data+=128;}else{//处理剩余数据}}std::stringresult=DigestToHex();```这个框架只是一个起点,实际的SHA512实现需要填充完整的扩展、混合和压缩步骤,以及处理边界条件。
此外,为了提高效率,可能还需要使用SIMD(SingleInstructionMultipleData)指令集或其他优化技术。
SHA512算法在多种场景下具有广泛的应用,如:-**文件校验**:通过计算文件的SHA512摘要,可以验证文件在传输或存储过程中是否被篡改。
-**密码存储**:在存储用户密码时,不应直接保存明文,而是保存SHA512加密后的哈希值。
当用户输入密码时,同样计算其SHA512值并与存储的哈希值比较,不匹配则表明密码错误。
-**数字签名**:在公钥加密体系中,SHA512可以与非对称加密算法结合,生成数字签名,确保数据的完整性和发送者的身份验证。
了解并掌握SHA512加密算法及其C++实现,对于信息安全专业人员来说至关重要,它不仅有助于提升系统的安全性,也有助于应对不断发展的网络安全威胁。
通过深入学习和实践,我们可以更好地理解和利用这一强大的工具。
2025/8/13 8:50:17 2.14MB 加密算法
1
AES加密,全称为AdvancedEncryptionStandard,是目前广泛应用于数据加密的标准算法之一,特别是在软件开发领域。
C++是一种通用的编程语言,拥有强大的性能和灵活性,因此在实现AES加密时非常适用。
本文将深入探讨AES加密的基本原理以及如何在C++中实现AES加密。
AES是一种分组密码,它将明文数据分成128位的数据块进行处理。
加密过程分为多个步骤,包括字节替代(SubBytes)、行移位(ShiftRows)、列混淆(MixColumns)和轮密钥加(AddRoundKey)。
这些步骤在10轮(对于128位密钥)或14轮(对于256位密钥)中重复执行,以确保数据的安全性。
密钥扩展也是一项关键操作,它将原始密钥扩展为足够多的轮密钥,用于每一轮的加密。
在C++中实现AES加密,首先需要理解并实现上述的加密步骤。
`aes.cpp`和`aes.h`两个文件通常包含了AES加密的函数定义和类声明。
`aes.cpp`是实现文件,包含具体的函数实现,而`aes.h`是头文件,定义了相关的类和函数接口,方便其他模块调用。
在`aes.cpp`中,可能会有一个名为`AES`的类,其中包含如`encrypt`和`decrypt`这样的成员函数,分别用于加密和解密。
这些函数可能接收一个128位的明文块和一个密钥作为输入,然后返回对应的密文块。
类内部可能还会有其他辅助函数,如进行字节替代、行移位和列混淆的函数。
`aes.h`文件则会包含`AES`类的声明,以及必要的公有成员函数和常量定义。
例如:```cppclassAES{public:AES(constunsignedchar*key,intkeySize);//初始化AES对象,设置密钥voidencrypt(unsignedchar*plaintext,unsignedchar*ciphertext);//加密函数voiddecrypt(unsignedchar*ciphertext,unsignedchar*plaintext);//解密函数private://其他私有成员变量和函数,如密钥扩展、字节操作等};```在实际使用时,开发者可以通过实例化`AES`类,并调用其`encrypt`或`decrypt`方法对数据进行加密和解密操作。
例如:```cppAESaes(key,16);//假设key是16字节的密钥unsignedcharplaintext[16],ciphertext[16];//...填充plaintext...aes.encrypt(plaintext,ciphertext);//...使用ciphertext...aes.decrypt(ciphertext,plaintext);//...plaintext恢复为原文...```AES加密在C++中的实现涉及到对加密流程的精确控制和内存操作,同时还需要注意效率和安全性。
通过`aes.cpp`和`aes.h`这两个文件,我们可以构建一个完整的AES加密库,方便在各种C++项目中集成和使用。
2025/8/12 9:24:26 17KB AES,C++
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡