实验研究了主动调Q掺镱光纤激光器(YDFL)中放大自发辐射(ASE)对调Q脉冲形成和演化的影响。
结果表明,尾纤型声光调制器(AOM)打开过快和掺镜光纤(YDF)增益瞬态特性间的综合相互作用结果,使得注入至腔内的初始宽带ASE形成功率波动,并在腔内循环放大,导致输出脉冲呈多峰结构;而注入的宽带ASE因功率过高会导致YDF的增益自饱和效应,制约高增益的获取,使激光器难以获得调Q激光脉冲,输出脉冲主要为调Q的ASE脉冲;通过引入光纤布拉格光栅(FBG),可以有效抑制YDF中因ASE产生的增益饱和效应,YDF工作在高增益状态,有利于获得低阈值、窄脉宽和高峰值功率的调Q激光脉冲。
引入FBG后,在160mW抽运时,实验测得的调Q激光脉冲峰值功率和脉宽分别为40.7W和30ns。
2024/9/11 16:10:38 2.46MB 激光器 掺镱光纤 主动调Q 放大自发
1
高增益观测器,滑模观测器,扩张状态观测器
2024/7/22 2:01:25 512KB 状态 观测器
1
自制2.4G-18db和21db无线定向天线高增益详细图纸
2024/2/22 17:30:23 945KB 2.4G 18db 21db 定向天线 高增益
1
设计出了一种用于光强检测的前置放大及量程自动转换电路。
许多光强信号放大电路仅追求高增益,忽略了对测量范围的考虑。
本文采用同轴尾纤型光电探测器把光强信号转换成光电流信号,精密截波稳定型运算放大器ICL7652把光电流信号转化为电压信号,量程转换电路74HC4052受单片机控制可在4个量程之间自动转换,通过调节暗电流补偿电路减小光电二极管暗电流所产生的影响。
仿真测试结果表明,电路参数选择合理、电路模块性能稳定,并且很好地降低了噪声的影响,设计的电路具有低噪声、高增益、高共模抑制比、失调小等优点,探测光强动态范围可达76dB。
1
提出了基于主振荡功率放大(MOPA)结构的皮秒光纤激光系统。
该系统将重复频率为29.87MHz的半导体可饱和吸收镜被动锁模光纤激光器作为种子源。
采用预放系统并结合声光调制器将种子源的重复频率降至574kHz。
MOPA结构基于棒状光子晶体光纤(PCF),利用PCF大模场、高增益的特点直接对脉冲宽度为30ps的脉冲进行放大,有效抑制了自相位调制效应引起的光谱展宽。
研究结果表明,所提系统的5dB光谱线宽与光脉冲峰值功率成比例,该系统最终输出了近衍射极限、峰值功率为3.4MW的皮秒脉冲(输出功率为20W时,光束质量因子M2=1.01),最高平均输出功率为21.86W,脉冲宽度为11.1ps,中心波长为1030.74nm,5dB光谱线宽为1.75nm。
1
设计采用的是315MHz稳频无线电遥控组件及其它的外围元件,组装的遥控开关。
通过单片机可以对十路220V以上的各种电器进行控制。
控制距离为50米左右。
发射电路扫描键盘的键位,由单片机发出相应的控制信号,送到PT2262的数据输入端。
由PT2262编码并调制在315MHZ载波上,经过一级高频放大后由天线发射出去。
再由接收板接收信号,经过两级放高频放大后,由检波电路解调出调制信号,数字信号经过双运算集成放大块LM358两级高增益放大后送入PT2272进行解码,输出端送给单片机,单片机根据动作信号分别去控制相使用电器的控制继电器。
完成对用电器的控制
2017/8/20 19:37:07 232KB 单片机 无线控制
1
经典非线性系统教材(中文翻译),包含目录和书签.手工制作目录,可跳转.适合各种电子阅读器.高清无水印.本书内容按照数学知识的由浅入深分成了四个部分。
基本分析部分引见了非线性系统的基本概念和基本分析方法;
反馈系统分析部分引见了输入-输出稳定性、无源性和反馈系统的频域分析;
现代分析部分引见了现代稳定性分析的基本概念、扰动系统的稳定性、扰动理论和平均化以及奇异扰动理论;
非线性反馈控制部分引见了反馈控制的基本概念的反馈线性化,并给出了几种非线性设计工具,如滑模控制、李雅普诺夫再设计、反步法、基于无源的控制和高增益观测器等。
全书已根据作者2011年2月所发勘误表进行了内容更正。
2022/9/14 11:49:43 22.38MB 非线性系统 中文版 目录和书签 Hassan
1
经典非线性系统教材,包含目录和书签.手工制作目录,可跳转.适合各种电子阅读器.高清无水印.本书内容按照数学知识的由浅入深分成了四个部分。
基本分析部分引见了非线性系统的基本概念和基本分析方法;
反馈系统分析部分引见了输入-输出稳定性、无源性和反馈系统的频域分析;
现代分析部分引见了现代稳定性分析的基本概念、扰动系统的稳定性、扰动理论和平均化以及奇异扰动理论;
非线性反馈控制部分引见了反馈控制的基本概念的反馈线性化,并给出了几种非线性设计工具,如滑模控制、李雅普诺夫再设计、反步法、基于无源的控制和高增益观测器等。
2022/9/14 11:46:53 16.5MB PDF文档 教材 高清无水印 Nonlinear
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡