结合高光谱数据和深度学习的特点,提出一种同时考虑像素光谱信息和空间信息的深度卷积神经网络框架。
该框架主要步骤如下:首先利用主成分分析法对高光谱遥感图像进行光谱特征提取,消除特征之间的相关性,并降低特征维数,获得清晰的空间结构;
然后利用深度卷积神经网络对输入的样本进行空间特征提取;
最后通过学习到的高级特征进行回归训练
2025/1/22 10:55:54 3.25MB 深度学习 高光谱图像 分类
1
包含常用的高光谱数据集,IndianPines,Paviau,salinas,Simu
2024/11/21 21:16:05 116.48MB 高光谱图像
1
ENVI  ENVI(TheEnvironmentforVisualizingImages)是美国ITTVisualInformationSolutions公司的旗舰产品。
ENVI由遥感领域的科学家采用IDL开发的一套功能强大的遥感图像处理软件;
它是快速、便捷、准确地从地理空间影像中提取信息的首屈一指的软件解决方案,它提供先进的,人性化的使用工具来方便用户读取、准备、探测、分析和共享影像中的信息。
今天,众多的影像分析师和科学家选择ENVI来从地理空间影像中提取信息。
已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋,测绘勘察和城市与区域规划等行业。
  创建于1977年的RSI(现为ITTVisualInformationSolutions公司)已经成功地为其用户提供了超过30年的科学可视化软件服务。
目前ITTVisualInformationSolutions的用户数超过150,000,遍布于80个国家与地区。
从2000年开始连续三年,ENVI被美国国家影像制图局(NIMA)等权威机构组织的Passfind项目遥感影像系统评比当中被评为“最佳的遥感目标识别软件”。
2004年RSI公司并入上市公司ITT公司,并于2006年5月正式成立ITTVisualInformationSolutions公司,ENVI&IDL的发展步伐更加有利与快捷,更多的新功能与算法加进到新版本中。
  强大的影像显示、处理和分析系统  ENVI包含齐全的遥感影像处理功能:常规处理、几何校正、定标、多光谱分析、高光谱分析、雷达分析、地形地貌分析、矢量应用、神经网络分析、区域分析、GPS联接、正射影象图生成、三维图像生成、丰富的可供二次开发调用的函数库、制图、数据输入/输出等功能组成了图像处理软件中非常全面的系统。
  ENVI对于要处理的图像波段数没有限制,可以处理最先进的卫星格式,如Landsat7、IKONOS、SPOT,RADARSAT,NASA,NOAA,EROS和TERRA,并准备接受未来所有传感器的信息。
  强大的多光谱影像处理功能  ENVI能够充分提取图像信息,具备全套完整的遥感影像处理工具,能够进行文件处理、图像增强、掩膜、预处理、图像计算和统计,完整的分类及后处理工具,及图像变换和滤波工具、图像镶嵌、融合等功能。
ENVI遥感影像处理软件具有丰富完备的投影软件包,可支持各种投影类型。
同时,ENVI还创造性地将一些高光谱数据处理方法用于多光谱影像处理,可更有效地进行知识分类、土地利用动态监测。
  更便捷地集成栅格和矢量数据  ENVI包含所有基本的遥感影像处理功能,如:校正、定标、波段运算、分类、对比增强、滤波、变换、边缘检测及制图输出功能,并可以加注汉字。
ENVI具有对遥感影像进行配准和正射校正的功能,可以给影像添加地图投影,并与各种GIS数据套合。
ENVI的矢量工具可以进行屏幕数字化、栅格和矢量叠合,建立新的矢量层、编辑点、线、多边形数据,缓冲区分析,创建并编辑属性并进行相关矢量层的属性查询。
  ENVI的集成雷达分析工具助您快速处理雷达数据  用ENVI完整的集成式雷达分析工具可以快速处理雷达SAR数据,提取CEOS信息并浏览RADARSAT和ERS-1数据。
用天线阵列校正、斜距校正、自适应滤波等功能提高数据的利用率。
纹理分析功能还可以分段分析SAR数据。
ENVI还可以处理极化雷达数据,用户可以从SIR-C和AIRSAR压缩数据中选择极化和工作频率,用户还可以浏览和比较感兴趣区的极化信号,并创建幅度图像和相位图像。
  地形分析工具  ENVI具有三维地形可视分析及动画飞行功能,能按用户制定路径飞行,并能将动画序列输出为MPEG文件格式,便于用户演示成果。
  准备您的影像  ENVI提供了自动预处理工具,可以快速、轻松地预处理影像,以便进行查看浏览或其他分析。
通过ENVI,您可以对影像进行以下处理:  •正射校正  •影像配准  •影像定标  •大气校正  •创建矢量叠加  •确定感兴趣区域(ROIs)  •创建数字高程模型(DEMs)  •影像融合,掩膜和镶嵌  •调整大小,旋转,或数据类型转换  探测影像  ENVI提供了一个直观的用户界面和易用的工具,让您轻松、快速地浏览和探测影像。
您可以使用ENVI完成的工作包括:浏览大型数据集和元数据,对影像进行视觉对比,创建强大的3D场景,创建散点图,探测像素特征等。
  分析影像  ENVI提供了业界领先的图像处理功能,方便您从事各种用途的信息提取。
ENVI提供了一套完整的经科学实践证明的成熟工具来帮助您分析影像。
  数据分析工具  ENVI包括一套综合数据分析工具,通过实践证明的成熟算法快速、便捷、准确地分析图像。
  •创建地理空间统计资料,如自相关系数和协方差  •计算影像统计信息,如平均值、最小/最大值、标准差  •提取线性特征  •合成雷达影像  •主成分计算  •变化检测  •空间特征测量  •地形建模和特征提取  •应用通用或自定义的滤波器  •执行自定义的波段和光谱数学函数  光谱分析工具  光谱分析通过像素在不同波长范围上的反应,来获取有关物质的信息。
ENVI拥有目前最先进的,易于使用的光谱分析工具,能够很容易地进行科学的影像分析。
ENVI的光谱分析工具包括以下功能:  •监督和非监督方法进行影像分类  •使用强大的光谱库识别光谱特征  •检测和识别目标  •识别感兴趣的特征  •对感兴趣物质的分析和制图  •执行像素级和亚像素级的分析  •使用分类后处理工具完善分类结果  •使用植被分析工具计算森林健康度  共享您的信息  ENVI能轻松地整合现有的工作流,让您能在任何环境中与同事们分享地图和报告。
所处理的图像可以输出成常见的矢量格式和栅格影像便于协同和演示。
  自定义您的地理空间影像应用  ENVI建立于一个强大的开发语言—IDL之上。
IDL允许对其特性和功能进行扩展或自定义,以符合用户的具体要求。
这个强大而灵活的平台,可以让您创建批处理、自定义菜单、添加自己的算法和工具,甚至将C++和Java代码集成到您的工具中等。
  自2007年起,与著名的GIS厂商ESRI公司开展全面战略合作,ENVIReaderforArcGIS模块让ArcGIS系列软件全面支持ENVI的数据格式,最新版本ENVI4.5完全支持ArcGIS的Geodatabase等。
2024/10/15 19:08:32 2.72MB envi
1
在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。
"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(LightDetectionandRanging)数据,以实现更精确的图像分类。
高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。
这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。
通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。
LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。
LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。
此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。
这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。
每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。
数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。
多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。
将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。
在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。
通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。
对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。
"高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。
通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024/10/9 21:43:17 185.02MB 数据集
1
高光谱处理中的常用数据
2024/7/14 13:54:21 11.69MB 高光谱数据
1
高光谱解混数据集(Urban),matlab的mat格式文件,Urban是高光谱分离研究中使用最广泛的高光谱数据之一。
有307x307像素,每个像素对应一个2x2平方米的区域。
在该图像中,存在210nm波长,范围从400nm到2500nm,光谱分辨率10nm。
在通道1--4,76,87,101-111,136--153和198-210被移除后(由于密集的水蒸气和大气效应),仍保留162个通道
2024/6/30 17:06:08 16.92MB 高光谱解混数
1
数据挖掘在各行业的应用论文数据仓库与数据挖掘.caj空间数据挖掘技术.caj数据仓库与数据挖掘技术及其在科技情报业的应用前景.caj相关案件的数据挖掘.caj数据挖掘技术.caj一种实时过程控制中的数据挖掘算法研究.cajEIS环境下的数据挖掘技术的研究.caj数据挖掘及其工具的选择.caj数据挖掘技术与中国商业银行业务发展策略.caj数据挖掘工具DMTools的设计与实现.caj数据仓库、数据挖掘在银行中的应用.caj基于信息熵的地学空间数据挖掘模型.caj数据挖掘及其在商业银行中的应用.caj数据挖掘与决策支持系统.caj数据仓库、数据集市和数据挖掘.caj数据仓库与数据挖掘1.cajIDSS中数据仓库和数据挖掘的研究与实现.caj基于粗糙集理论的数据挖掘模型.caj数据挖掘及其在SXWG_EIS中的应用.caj数据挖掘——技术与应用综述.caj挖掘转移规则一种新的数据挖掘技术.caj以地物识别和分类为目标的高光谱数据挖掘.caj数据挖掘与虚拟数据库.caj数据挖掘与电力系统.caj浅说数据挖掘.caj带Rough算子的决策规则及数据挖掘中的软计算.caj数据挖掘系统的一种实现策略.caj信息检索中的数据挖掘技术.caj红外光谱谱图库中的数据挖掘.caj中介粗集及其在数据挖掘中的应用.caj数据挖掘在音高变化规律学习中的应用.caj数据挖掘技术在财经领域的应用.caj知识发现和数据挖掘的研究.caj数据仓库与数据挖掘技术浅谈.caj用户访问模式数据挖掘的模型与算法研究.caj数据仓库的建设与数据挖掘技术浅析.caj分类特征规则的数据挖掘技术.caj数据挖掘技术的主要方法及其发展方向.cajOLAP和数据挖掘技术在Web日志上的应用.caj数据挖掘技术12.caj数据挖掘技术初探.caj探索式数据挖掘模型的讨论.caj前向网络bp算法在数据挖掘中的运用.caj数据挖掘在Internet信息导航系统中的应用研究.caj数据挖掘技术123.caj基于粗糙集(Roughset)的数据挖掘及其实现.caj数据挖掘技术在建模、优化和故障诊断中的应用.cajFCC油品质量指标智能监测系统的数据挖掘与修正技术.caj一种测试数据挖掘算法的数据源生成方法.caj基于数据挖掘的类比推理技术在石油产品分析系统中的实现.caj神经网络在数据挖掘中的应用研究.caj数据挖掘方法的评述.caj基于数据挖掘的类比推理技术在石油产品分析系统中的实现1.caj一个面向电子商务的数据挖掘系统的设计与实现.caj数据挖掘技术在煤与瓦斯突出预测中的应用研究.caj基于数据抽取器实现数据挖掘.caj基于数据挖掘的群决策模型.caj基于数据挖掘的普通话韵律规则学习.caj数据挖掘和知识发现的技术方法.caj可视化数据挖掘技术及其应用.caj神经网络数据挖掘方法中的数据准备问题.kdh基于CORBA的数据挖掘工具KDD-DC.caj基于高校人事信息库的数据挖掘研究.caj数据挖掘管理系统.caj电信网告警数据库中的数据挖掘.caj数据挖掘原理、方法及其应用.caj一种基于数据仓库的数据挖掘系统的结构框架.cajOLAP与数据挖掘一体化模型的分析与讨论.caj一种新型数据分析技术——数据挖掘.cajaaa数据挖掘和数据仓库及其在电信业中的应用.caj数据挖掘技术及其应用.caj数据挖掘中概念树的标准、生成和实现.kdhXML与面向Web的数据挖掘技术.caj数据挖掘和数据仓库及其在电信业中的应用.caj数据挖掘技术及其在地学中的应用.caj结合数据融合和数据挖掘的医疗监护报警.caj基于多媒体数据库的数据挖掘系统原型.caj数据挖掘技术1.caj股票信息的数据挖掘.caj多媒体数据挖掘的相关媒体特征库方法.caj基于数据挖掘的深部采场岩爆知识的自动获取.caj空间数据挖掘理论与方法的研究.caj金融数据挖掘中的非线性相关跟踪技术(英文).caj数据挖掘技术的一个应用模型.cajDNA中的数据挖掘和启动子识别.caj数据仓库与数据挖掘12.caj数据挖掘系统设计.caj数据挖掘方法的研究.caj用数据挖掘技术优选侧钻井井位.caj关注政府上网后的数据挖掘.kdh数据挖掘技术及其在电力系统中的应用.caj目前数据挖掘算法的评价.caj基于数据挖掘的地下硐室围岩稳定性判别.caj基于属性分类的数据挖掘方法.caj基于数据挖掘模型的高压输电线系统故障诊断.caj用于建模、优化、故障诊断的数据挖掘技术.caj格子机数据挖掘方法.caj数据挖掘及其在电力系统中的应用.kdh用于
1
使用SVM代码对AVIRIS_Indiana_16class高光谱数据集进行分类
2024/5/2 10:58:52 5.8MB 机器学习 SVM 高光谱
1
高光谱c++遥感影像数据处理光谱
2024/2/27 9:33:43 352KB 高光谱 c++ 遥感影像 数据处理
1
描述了高光谱数据和多光谱数据的波段组合差异,提取相同地区的相同地物,对比分析两种数据的光谱特征。
2024/2/4 2:47:20 5.92MB 高光谱
1
共 22 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡