WPD,小波包阈值去噪,对于有的信号的去噪效果比较好,比如非平稳的信号,非线性信号
2025/6/28 2:51:26 1KB 阈值
1
《数字图像处理——应用篇》是由谷口庆治编著的一本深入探讨图像处理技术的专业书籍,这本书在图像处理领域具有很高的权威性。
全书完整PDF版本是唯一可获取的全面资源,对于学习和研究图像处理技术的读者来说,无疑是一份宝贵的资料。
图像处理是计算机科学中的一个重要分支,它涉及了将模拟图像转换为数字形式,以及对数字图像进行各种操作以改善质量或提取有用信息。
在《数字图像处理——应用篇》中,作者谷口庆治详细阐述了这一领域的关键概念和技术,包括图像获取、颜色模型、图像增强、图像复原、图像分割、特征提取以及模式识别等核心主题。
1.**图像获取**:这部分介绍了图像传感器的工作原理,如CCD和CMOS,以及扫描仪和相机的成像过程。
同时,还涵盖了像素的概念、采样理论和量化过程。
2.**颜色模型**:书中详细讨论了RGB、CMYK、HSV、YCbCr等常见颜色模型,以及它们在不同应用场景下的选择和转换方法。
3.**图像增强**:通过滤波器、直方图均衡化等手段改善图像的视觉效果,提升图像质量,这部分包括线性和非线性滤波、对比度增强等技术。
4.**图像复原**:针对图像退化问题,如噪声、模糊等,提出了一系列恢复技术,如Wiener滤波、反卷积等。
5.**图像分割**:这是图像分析的关键步骤,包括阈值分割、区域生长、边缘检测等方法,用于将图像划分为有意义的部分。
6.**特征提取**:为了识别和理解图像,需要从图像中提取有意义的特征,如角点、边缘、纹理和形状,这些特征可用于后续的模式识别和对象识别。
7.**模式识别**:利用机器学习算法,如支持向量机、神经网络、决策树等,对图像中的模式进行分类和识别,是图像处理领域的高阶应用,广泛应用于OCR文字识别、人脸识别、医学影像分析等领域。
8.**OCR文字识别**:光学字符识别技术是模式识别的一个实例,通过识别图像中的文字并转化为可编辑文本,该技术在文档自动化处理、图书数字化等方面有着广泛的应用。
压缩包中的文件名表明资源分为了三个部分:`数字图像处理——应用篇.part1.rar`、`数字图像处理——应用篇.part2.rar`和`数字图像处理——应用篇.part3.rar`。
通常,这种分卷压缩格式是为了便于大文件的传输和存储,用户需要下载所有部分并使用合适的解压工具(如WinRAR或7-Zip)合并解压,才能获得完整的PDF文件。
《数字图像处理——应用篇》是一本涵盖广泛、深度适中的教材,适合计算机视觉、图像处理、模式识别等相关领域的学生和研究人员。
通过学习本书,读者不仅可以掌握基本的图像处理技术,还能了解其在实际应用中的策略和方法,为进入这个领域的深入研究打下坚实基础。
1

针对深井高应力软岩巷道围岩大变形、强流变性、强烈底鼓等非线性大变形围岩控制难题,以邢东矿-980m大巷为工程背景,现场调研-980m大巷围岩变形破坏特征,阐明了高地应力、强烈地质构造、高渗透压环境下深部巷道围岩变形机制机理,以库伦-莫尔应力圆分析了-980m大巷围岩开挖造成的高主应力差对围岩破坏作用。
在上述研究的基础上,针对性地提出了"高性能锚网喷+高强锚索+可缩性环形支架+注浆加固"的联合支护技术,并进行工业性实践。
工程实践表明,该技术可有效解决-980m大巷围岩控制难题,对类似巷道围岩控制具有借鉴意义。
2025/6/20 7:27:44 277KB
1

在计算机视觉领域,相机标定是一项至关重要的任务,它能够帮助我们校正图像畸变,获取相机的内在参数,从而实现精确的三维重建和物体定位。
Tsai的标定方法是一种早期提出的、广泛应用于相机标定的经典算法,由Richard Tsai在1987年提出。
本篇文章将深入探讨Tsai的相机标定方法及其在Matlab环境下的实现。
我们来理解Tsai的相机标定理论基础。
该方法基于多视图几何,通过一组已知坐标点(通常是在平面棋盘格上的特征点)在图像中的投影,来求解相机的内在参数矩阵和外在参数矩阵。
内在参数包括焦距、主点坐标和径向畸变系数,而外在参数则表示相机相对于标定板的位姿。
Tsai的标定流程主要包括以下几个步骤:1. 数据采集:拍摄多张包含标定板的图片,确保标定板在不同角度和位置出现,以获取丰富的视图信息。
2. 特征检测:在每张图片中检测并提取标定板的角点,常用的方法有角点检测算法,如Harris角点检测或Shi-Tomasi角点检测。
3. 建立世界坐标与像素坐标的对应关系:将标定板角点在世界坐标系中的位置与在图像中的像素坐标对应起来。
4. 线性化问题:通过极几何约束,将非线性问题线性化,可以使用高斯-牛顿法或Levenberg-Marquardt法进行迭代优化。
5. 求解参数:求解内在参数矩阵K和外在参数矩阵R、t,其中R表示旋转矩阵,t表示平移向量。
6. 校正与验证:利用求得的参数对图像进行畸变校正,并通过重投影误差来评估标定结果的准确性。
在Matlab环境下实现Tsai的标定方法,可以充分利用其强大的数学计算能力和可视化功能。
需要编写代码来完成上述的数据采集和特征检测。
然后,利用内置的优化工具箱进行参数估计。
可以绘制图像和标定板的重投影误差,以直观地查看标定效果。
在提供的压缩包文件e19bb35c303d499aa5c2568a73f0a35f中,可能包含了实现上述过程的Matlab源代码。
代码可能分为几个部分,包括角点检测、标定板坐标匹配、线性化优化以及参数解算等模块。
用户可以通过阅读和运行这些代码,理解Tsai标定方法的工作原理,并将其应用到自己的项目中。
Tsai的相机标定方法是计算机视觉中的一个经典算法,它通过解决非线性优化问题,实现了相机参数的有效估计。
在Matlab环境下,我们可以方便地实现这一算法,对相机进行标定,为后续的视觉应用提供准确的先验信息。
对于初学者来说,理解和实践这个方法,不仅可以加深对计算机视觉原理的理解,也能提高编程和调试能力。
2025/6/20 1:32:22 5KB
1
利用CO2激光器对汽车用高强钢板作了大量的热应力成形试验,并对材料进行了相关的微观组织分析。
在深入研究试件弯曲角变化规律的基础上,对激光热应力成形的工艺参数进行了合理优化,即在激光功率为1.5kW、扫描次数为6次、扫描速度为1.2m/min以及激光光斑直径为3.5mm、面能量在20~45J/mm2范围之间变化时热应力成形效果最好,提出了避免工件表面出现烧蚀现象的条件。
试验结果表明,在试验参数的有效范围内激光扫描次数、扫描速度和材料宽度对试件弯曲角的影响趋于正比关系;
光斑直径在较大或较小时呈现类线性关系;
激光功率的影响呈明显的非线性特点,但在较小的情况下与弯曲角接近线性关系;
接近材料表面
2025/6/16 17:43:34 1.36MB 激光技术 高强钢板 激光成形 热应力
1

数据结构是计算机科学中的核心概念,它涉及到如何有效地组织和管理大量数据,以便于高效地进行存储、检索、更新和删除等操作。
C语言是一种强大的系统编程语言,它提供了底层控制,非常适合实现数据结构的算法。
这个“数据结构C语言模拟器”很可能是为了帮助学习者通过实际操作来理解各种数据结构的工作原理。
1. **数组**:数组是最基本的数据结构,它是一组相同类型元素的集合,可以通过索引来访问每个元素。
在C语言中,数组的声明和使用是非常直接的。
2. **链表**:链表是由一系列节点组成,每个节点包含数据以及指向下一个节点的指针。
链表分为单链表、双链表和循环链表等类型,C语言中通常通过结构体来实现链表。
3. **栈**:栈是一种后进先出(LIFO)的数据结构,常用于函数调用、表达式求值等场景。
C语言中可以使用数组或动态内存分配来实现栈。
4. **队列**:队列是一种先进先出(FIFO)的数据结构,常用于任务调度、缓冲区管理等。
C语言中可以使用数组或链表来实现队列。
5. **树**:树是一种非线性的数据结构,每个节点可以有零个或多个子节点。
二叉树、平衡树(如AVL树、红黑树)和搜索树(如B树、B+树)是常见的树形结构。
C语言中,树通常通过指针和结构体来实现。
6. **图**:图是由顶点和边组成的非线性数据结构,用于表示对象之间的关系。
图可以是无向的或有向的,加权的或无权重的。
邻接矩阵和邻接表是常见的图的表示方法。
7. **哈希表**:哈希表提供快速的查找、插入和删除操作,通过哈希函数将键映射到特定位置。
C语言中,哈希表通常通过数组和链表结合的方式来实现。
8. **排序和搜索算法**:包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序以及二分查找、哈希查找等,这些算法在数据结构中起着关键作用。
9. **递归和分治策略**:递归是一种函数直接或间接调用自身的方法,而分治策略是将大问题分解为小问题解决的策略,如归并排序和快速排序算法就应用了这种思想。
10. **动态规划**:动态规划用于求解最优化问题,通过构建状态转移矩阵或数组来找到最优解。
这个“数据结构C语言模拟器”很可能包含了上述所有或部分数据结构的实现,并通过详细解释帮助用户理解它们的工作原理和操作流程。
通过实际操作,学习者可以更好地掌握数据结构的精髓,提高编程能力和问题解决能力。
在学习过程中,理解每个数据结构的特性、适用场景以及优缺点至关重要,同时掌握相应的操作算法也是必不可少的。
这个模拟器无疑为学习者提供了一个实践和巩固理论知识的宝贵平台。
2025/6/15 20:24:23 6.82MB
1
第01章线性规划第02章整数规划第03章非线性规划第04章动态规划----第30章偏最小二乘回归附录一Matlab入门附录二Matlab在线性代数中的应用附录三运筹学的LINGO软件附录四判别分析code.rar
2025/6/7 5:06:06 12.54MB matlab算法 源码 pdf
1
采用拟牛顿法求解非线性方程组,结构完整,非线性方程组在此程序里为显示,若是隐式也可借鉴
2025/6/6 22:25:49 4KB C++ 拟牛顿法 非线性方程组
1
数学工具,用于多元非线性回归分析,包含源代码,适用于源代码的学习和数学工具的使用
2025/6/6 19:10:20 2.86MB delphi 源代码
1
相关文件:[mutualinfomation]计算脑电等信号的互信息程序,matlab源代码[runqian-report]润乾报表详细操作手册,方便java开发人员,运维人员作为参考,学习。
[InfoTheory]该文件中包含信息论中的一些信息熵、互信息的计算。
[ant-colony-and-mutual-information]该工具箱描述了基于蚁群算法和互信息进行非线性盲源信号分离[Wavelet_EntropyinformationLZC]脑电处理中,特征提取的几个有用算法程序,包括小波熵、LZC脑电复杂度、互信息等,以上程序,我已将亲自运行,可以通过,便于大家做脑电特征提取,希望对大家有帮助
2025/5/27 0:03:24 9KB 脑电 EEG 特征提取 互信息
1
共 700 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡