DQPSK调制解调技术是在QPSK基础上发展起来的一种技术,其在发射方采用差分编码,对原来的传递信息码进行一次相对编码,利用载波相位的相对变化来表示传输信息。
主要任务是研究数字信号调制技术中的四进制数字信号的调制调解,熟练掌握差分四相相移键控(DQPSK)在信号传输中的应用,以及其性能特点。
然后着重对四进制数字信号的调制调解进行研究,重点掌握其中差分四相相移键控(DQPSK)的原理,并对其在MATLAB平台进行设计与仿真
2025/10/25 7:47:45 5.27MB DQPSK MATLAB 调制解调器
1
纯c读写ini配置文件用c/c++读写ini配置文件有不少第三方的开源库,如iniparser、libini、rwini、UltraLightINIParser等,但都不理想,往往代码较大、功能较弱、接口使用不方便。
尤其在大小写处理、前后空格、各种注释、跨平台换行符支持、带引号字符串处理、无section操作、原格式保持等方面存在问题。
现将本人精心制作的ini读写程序源码奉献给大家,纯c编写,简洁好用。
支持windows和linux。
主要特点:1、支持;和#注释符号,支持行尾注释。
2、支持带引号'或"成对匹配的字符串,提取时自动去引号。
引号中可带其它引号或;#注释符。
3、支持无section或空section(名称为空)。
4、支持10、16、8进制数,0x开头为16进制数,0开头为8进制。
5、支持section、key或=号前后带空格。
6、支持\n、\r、\r\n或\n\r换行格式。
7、不区分section、key大小写,但写入时以新串为准,并保持其大小写。
8、新增数据时,若section存在则在该节最后一个有效数据后添加,否则在文件尾部添加。
9、支持指定key所在整行删除,即删除该键值,包括注释。
10、可自动跳过格式错误行,修改时仍然保留。
11、修改时保留原注释:包括整行注释、行尾注释(包括前面空格)。
12、修改时保留原空行。
以上三点主要是尽量保留原格式。
不足之处:1、不支持单key多value(逗号分割),只能一次性提取后自行处理。
2、不支持同名重复section和key。
(重复section可视为错误,重复key则可能造成分歧)3、不能提取所有section或key名称。
使用只需两个文件inirw.h、inirw.c,另有测试程序和工程文件,支持windows和linux。
2025/10/15 11:32:26 7KB c 读写 ini
1
使用.c文件read函数读取返回的16进制值就可以直接获得传感器的温度,本程序为hal库开发主要是自己在做练习题的时候没有hal版驱动所以重新弄了一个。
2025/10/1 0:48:42 275KB stm32 嵌入式
1
修改原子大哥的蓝牙程序,有详细的注释,直接连接任何蓝牙模块rt与xt,当然此蓝牙模块要自己通过串口助手设置一些配置。
蓝牙端口为PB10,PB11.普通串口为PA9,PA10.里面还说明明了控制的方式,如:数字1或字母q的控制,16进制控制.
2025/9/16 15:08:02 3.81MB stm32f103c8t6 蓝牙通信 简单容易 STM32F1
1
介绍了常用的多进制数字调制技术及其应用,比较了它们的频谱利用率和实现的难易,给出了多种数字调制的新技术。
2025/8/24 0:28:45 149KB 多进制 数字调制
1
UDP通信,UDP组播调试助手源码。
VS2010开发,C#语言编写。
支持UDP通信接收与发送,UDP组播接收与发送功能,能够发送字符串和16进制数据
2025/8/23 4:32:56 78KB UDP UDP组播 UDP调试工具 组播
1
系统主要目标基本要求部分:1.在深入理解AES加密/解密算法理论的基础上,设计一个AES加密/解密软件系统;
2.完成一个明文分组的加解密,明文和密钥是十六进制,长度都为64比特(16个16进制数),输入明文和密钥,输出密文,进行加密后,能够进行正确的解密;
3.程序运行时,要求输出每一轮使用的密钥,以及每一轮加密或解密之后的16进制表示的值;
4.要求提供所设计系统的报告及完整的软件。
2025/8/21 17:58:40 267KB AES算法 课程 安全与保密
1
加密算法在信息技术领域中起着至关重要的作用,用于保护数据的安全性和隐私性。
SHA(SecureHashAlgorithm)是一种广泛使用的散列函数,它将任意长度的数据转换为固定长度的摘要值。
SHA512是SHA家族中的一员,提供更强大的安全性能,尤其适合大数据量的处理。
本文将深入探讨SHA512加密算法的原理、C++实现以及其在实际应用中的重要性。
SHA512算法基于密码学中的消息摘要思想,通过一系列复杂的数学运算(如位操作、异或、循环左移等),将输入数据转化为一个512位的二进制数字,通常以16进制形式表示,即64个字符。
这个过程是不可逆的,意味着无法从摘要值推导出原始数据,因此被广泛应用于数据完整性验证和密码存储。
在C++中实现SHA512算法,首先需要理解其基本步骤:1.**初始化**:设置一组初始哈希值(也称为中间结果)。
2.**预处理**:在输入数据前添加特殊位和填充,确保数据长度是512位的倍数。
3.**主循环**:将处理后的数据分成512位块,对每个块进行多次迭代计算,每次迭代包括四个步骤:扩展、混合、压缩和更新中间结果。
4.**结束**:将最后一个中间结果转换为16进制字符串,即为SHA512的摘要值。
C++代码实现时,可以使用位操作、数组和循环来完成这些计算。
为了简化,可以使用`#include`中的`uint64_t`类型表示64位整数,因为SHA512处理的是64位的数据块。
同时,可以利用`#include`中的`memcpy`和`memset`函数来处理内存操作。
此外,`#include`和`#include`库可用于将二进制数据转换成16进制字符串。
以下是一个简化的C++SHA512实现框架:```cpp#include#include#include#include#include//定义常量和初始化哈希值conststd::arraykInitialHashValues{...};std::arrayhashes=kInitialHashValues;//主循环函数voidProcessBlock(constuint8_t*data){//扩展、混合、压缩和更新中间结果}//输入数据的处理voidPreprocess(conststd::string&input){//添加填充和特殊位}//将摘要转换为16进制字符串std::stringDigestToHex(){//转换并返回16进制字符串}//使用示例std::stringmessage="Hello,World!";Preprocess(message);constuint8_t*data=reinterpret_cast(message.c_str());size_tdataSize=message.size();while(dataSize>0){if(dataSize>=128){ProcessBlock(data);dataSize-=128;data+=128;}else{//处理剩余数据}}std::stringresult=DigestToHex();```这个框架只是一个起点,实际的SHA512实现需要填充完整的扩展、混合和压缩步骤,以及处理边界条件。
此外,为了提高效率,可能还需要使用SIMD(SingleInstructionMultipleData)指令集或其他优化技术。
SHA512算法在多种场景下具有广泛的应用,如:-**文件校验**:通过计算文件的SHA512摘要,可以验证文件在传输或存储过程中是否被篡改。
-**密码存储**:在存储用户密码时,不应直接保存明文,而是保存SHA512加密后的哈希值。
当用户输入密码时,同样计算其SHA512值并与存储的哈希值比较,不匹配则表明密码错误。
-**数字签名**:在公钥加密体系中,SHA512可以与非对称加密算法结合,生成数字签名,确保数据的完整性和发送者的身份验证。
了解并掌握SHA512加密算法及其C++实现,对于信息安全专业人员来说至关重要,它不仅有助于提升系统的安全性,也有助于应对不断发展的网络安全威胁。
通过深入学习和实践,我们可以更好地理解和利用这一强大的工具。
2025/8/13 8:50:17 2.14MB 加密算法
1
doc格式,60多页吧,几百道题吧,都有答案吧,看好在下!部分:1.求下面函数的返回值(微软)intfunc(x){intcountx=0;while(x){countx++;x=x&(x-1);}returncountx;}假定x=9999。
答案:8思路:将x转化为2进制,看含有的1的个数。
2.什么是“引用”?申明和使用“引用”要注意哪些问题?答:引用就是某个目标变量的“别名”(alias),对应用的操作与对变量直接操作效果完全相同。
申明一个引用的时候,切记要对其进行初始化。
引用声明完毕后,相当于目标变量名有两个名称,即该目标原名称和引用名,不能再把该引用名作为其他变量名的别名。
声明一个引用,不是新定义了一个变量,它只表示该引用名是目标变量名的一个别名,它本身不是一种数据类型,因此引用本身不占存储单元,系统也不给引用分配存储单元。
不能建立数组的引用。
3.将“引用”作为函数参数有哪些特点?(1)传递引用给函数与传递指针的效果是一样的。
这时,被调函数的形参就成为原来主调函数中的实参变量或对象的一个别名来使用,所以在被调函数中对形参变量的操作就是对其相应的目标对象(在主调函数中)的操作。
(2)使用引用传递函数的参数,在内存中并没有产生实参的副本,它是直接对实参操作;
而使用一般变量传递函数的参数,当发生函数调用时,需要给形参分配存储单元,形参变量是实参变量的副本;
如果传递的是对象,还将调用拷贝构造函数。
因此,当参数传递的数据较大时,用引用比用一般变量传递参数的效率和所占空间都好。
(3)使用指针作为函数的参数虽然也能达到与使用引用的效果,但是,在被调函数中同样要给形参分配存储单元,且需要重复使用"*指针变量名"的形式进行运算,这很容易产生错误且程序的阅读性较差;
另一方面,在主调函数的调用点处,必须用变量的地址作为实参。
而引用更容易使用,更清晰。
4.在什么时候需要使用“常引用”? 如果既要利用引用提高程序的效率,又要保护传递给函数的数据不在函数中被改变,就应使用常引用。
常引用声明方式:const类型标识符&引用名=目标变量名;
例1inta;constint&ra=a;ra=1;//错误a=1;//正确例2stringfoo();voidbar(string&s);那么下面的表达式将是非法的:bar(foo());bar("helloworld");原因在于foo()和"helloworld"串都会产生一个临时对象,而在C++中,这些临时对象都是const类型的。
因此上面的表达式就是试图将一个const类型的对象转换为非const类型,这是非法的。
引用型参数应该在能被定义为const的情况下,尽量定义为const。
5.将“引用”作为函数返回值类型的格式、好处和需要遵守的规则?格式:类型标识符&函数名(形参列表及类型说明){//函数体}好处:在内存中不产生被返回值的副本;
(注意:正是因为这点原因,所以返回一个局部变量的引用是不可取的。
因为随着该局部变量生存期的结束,相应的引用也会失效,产生runtimeerror!注意事项:(1)不能返回局部变量的引用。
这条可以参照EffectiveC++[1]的Item31。
主要原因是局部变量会在函数返回后被销毁,因此被返回的引用就成为了"无所指"的引用,程序会进入未知状态。
(2)不能返回函数内部new分配的内存的引用。
这条可以参照EffectiveC++[1]的Item31。
虽然不存在局部变量的被动销毁问题,可对于这种情况(返回函数内部new分配内存的引用),又面临其它尴尬局面。
例如,被函数返回的引用只是作为一个临时变量出现,而没有被赋予一个实际的变量,那么这个引用所指向的空间(由new分配)就无法释放,造成memoryleak。
(3)可以返回类成员的引用,但最好是const。
这条原则可以参照EffectiveC++[1]的Item30。
主要原因是当对象的属性是与某种业务规则(businessrule)相关联的时候,其赋值常常与某些其它属性或者对象的状态有关,因此有必要将赋值操作封装在一个业务规则当中。
如果其它对象可以获得该属性的非常量引用(或指针),那么对该属性的单纯赋值就
2025/8/9 4:02:35 45KB C C++ 算法 经典
1
这是一款用C#编写的串口调试助手,有16进制收发选择,而且有自动发送功能。
收发数据分别存放在MYSQL数据库中,接受数据用工业控件iplotX绘制曲线。
2025/8/8 8:51:17 486KB C# 串口调试助手 MYSQL 画曲线图
1
共 274 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡