PD数据库由训练和测试文件组成。
培训数据属于20名PWP(6名女性,14名男性)和20名健康人(10名女性,10名男性),他们在伊斯坦布尔大学Cerrahpasa医学院神经系上诉。
从所有主题,采取多种类型的录音(26个声音样本,包括持续元音,数​​字,单词和短句)。
从每个语音样本中提取一组26个线性和时间-基于频率的特征。
由该专家医师确定的每个患者的UPDRS((统一帕金森氏病评分量表)分数也可用于该数据集)因此,该数据集也可用于回归。
在收集由多种类型的录音组成的训练数据集并进行实验后,根据所获得的结果,我们继续在相同条件下通过同一医生的检查过程收集来自PWP的独立测试集。
在收集这个数据集的过程中,28名PD患者被要求分别只说出持续元音'a'和'o'三次,共计168次录音。
从该数据集的语音样本中提取相同的26个特征。
这个数据集可以作为一个独立的测试集来验证在训练集上获得的结果。
2025/6/28 20:20:56 20.29MB 数据库
1
opencv4.0现在支持调用TensorFlow,这是opencv4.0实现maskrcnn的训练数据集.
2025/6/28 18:29:27 169.59MB C++ TensorFlow opencv4.0 mask
1
里面包含随机森林的matlab实现代码,并且有简单的训练数据集和测试数据集
2025/6/9 12:34:44 102KB 随机森林 matlab实现
1
印刷数字,总和10000张,7000训练,3000测试,还可以
2025/5/26 2:19:30 4.79MB 神经网络 数字识别
1
研究了基于运动想象的皮层脑电信号ECoG的特点,针对BCI2005竞赛数据集I中的ECoG信号,通过提取频带能量获得了想象左手小指及舌头运动时的特征,结合Fisher,SVM-RFE及L0算法对特征进行选择,采用10段交叉验证的方法得到训练数据集在各维特征数下的识别正确率并选出最佳特征组合.结果表明:三种特征选择方法中SVM-RFE算法所选出的特征组合可以获得最低的识别错误率以及最低的特征维数,针对所选出的特征组合,使用训练数据集的特征对线性支持向量机进行训练,使用训练好的模型对测试数据集进行分类,识别正确率可以达到94%.
1
用python编写的决策树ID3算法,运用了Car-Evaluation的例子。
BUG较少,综合了网上的优秀代码,并进一步形成自己的代码。
代码基本有注释,风格良好,能够很快看懂。
内含有比较规范的报告文档,包含所有流程图,说明图,以及文档风格绝对不错,无需更改,建议下载!该算法所测试的数据集如下(已经打包在内,并已经生成xls格式,方便直接使用):已知:UCI标准数据集Car-Evaluation,定义了汽车性价比的4个类别;
求:用ID3算法建立Car-Evaluation的属性描述决策树Car-Evaluation训练数据集文件:1.car_databases.pdf2.car_evalution-databases.pdf
2025/2/7 20:05:03 1.17MB 决策树 ID3 Car-Evaluati 人工智能
1
垃圾分类训练数据集,每张垃圾图片带有同名txt标签文件,共14802张图。
在机器学习中会把数据分为训练集、测试集和检验集。
2025/2/3 14:46:57 549.64MB 垃圾分类 数据集
1
这是一个人头检测器训练数据集、带xml标注信息,可用于yolo、TensorFlow等深度学习模型的训练数据集。
仅供学习使用。
如有侵权联系删除。
谢谢
2025/2/3 13:44:38 448.44MB yolo 深度学习 人头检测训练数据集
1
此资源是商城评论语料库58万条,可用于分析该评论语料库采集自京东商城,包含电脑评论、手机评论、图书评论、服装评论等19个不同种类的消费者评论,共有58万条评论记录。
数据文件中每条评论记录占一行,每条评论句后面给出类别标注,分隔符为"\t"。
该语料库是研究评论文本较好的训练数据集。
2025/1/2 13:53:43 41.27MB 料库
1
GPS轨迹数据集,用于深度学习的模型训练,数据集里有GPS轨迹数据和标签。
2024/9/29 12:51:53 216KB GPS 轨迹 数据集
1
共 37 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡