运动目标检测在计算机视觉,图像处理,模式识别等多领域有着广泛的应用,经历了多年的研究和探索,针对运动目标检测的算法层出不穷,我们也积累了许多相关的算法。
但是我们还远没有完成对这个充满挑战的领域的探索。
本文对运动目标检测的技术进行了一定的研究,实现了基于canny算子和光流法相结合的运动目标检测方法。
为了能够准确把握这个行业的动态,本文首先介绍了运动目标检测的三大经典方法:背景相减法,帧差法,光流法。
同时比较了各自的优缺点。
帧差法具有易实现,计算量小的优点,但是却无法准确的检测出运动目标的完整轮廓。
光流法具有对不断运动的运动目标进行目标检测,但是它却有很大的计算量,同时对噪声也比较敏感。
为了可以对运动目标进行更好的识别,我们提出了边缘检测算子与光流法相结合的新方法。
在对多种边缘检测算子进行了了解之后,我们确定了利用canny算子进行边缘检测,并且结合光流法进行运动目标检测的方法。
在用canny算子检测出运动物体边缘之后,借助光流法计算出物体的运动场,同时结合最大类间方差法分辨出运动目标和背景,接着将物体的边缘信息和物体的运动信息进行融合,最后运用数学形态学的方法对结果进行处理,得到最终的运动目标。
通过实验,我们发现该方法既克服了帧差法不能准确检测出运动物体轮廓,和光流法抗噪声能力差的缺点,可以准确检测运动目标,对运动目标具有更好的检测效果
2025/3/25 14:37:01 15.94MB 运动目标检测 CANNY算子 光流 matlab
1
surf的原始论文。
对做图像匹配的朋友有一定帮助。
SURF意指加速的具有鲁棒性的特征,由Bay在2006年首次提出,这项技术可以应用于计算机视觉的物体识别以及3D重构中。
SURF算子由SIFT算子改进而来,一般来说,标准的SURF算子比SIFT算子快好几倍,并且在多幅图片下具有更好的鲁棒性。
SURF最大的特征在于采用了harr特征以及积分图像integralimage的概念,这大大加快了程序的运行时间。
2025/3/18 15:50:41 4.34MB surf 算法
1
《计算机视觉——计算理论与算法基础》是马颂德、张正友编著的经典教材。
本资源为高清完整版,分享给大家一同学习!
2025/3/16 4:13:56 8.25MB 课本电子版 计算机视觉
1
基于内容的图像检索是计算机视觉的一个重要课题,它包括基于颜色、基于纹理、基于形状的图像检索,其中,今天我们讨论的是相对简单的基于颜色的图像检索。
我们知道,直方图是标识图像内容的一种有效方式,因此这里关键是要做到,仅仅比较它们的直方图就能测量出两个图像的相似度。
需要定义一个测量函数来评估两个直方图之间的差异程度或者相似
2025/3/15 8:47:38 18KB 图像检索
1
高压传输线的智能检测一直以来都是计算机视觉识别的热点。
本文打破传统的人工检测方式,利用无人机搭载开源硬件Arduino和相机模块采集高压传输线的数据,对采集回来的高压传输线图片用OpenCV和C++进行加载、灰度处理、二值化、边缘检测、直线检测、设计函数等系列处理,最终得到一幅只有传输线边界的直线检测图像,同时过滤掉复杂图背景,从而达到良好的识别效果。
2025/3/11 0:25:31 335KB 传输线检测
1
计算机视觉中的多视图几何-第一版中文pdf----个人收集电子书,仅用学习使用,不可用于商业用途,如有版权问题,请联系删除
2025/3/6 22:34:28 66.56MB 计算机视觉 多视图几何 SLAM
1
OpenCV的全称是:OpenSourceComputerVisionLibrary。
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和MacOS操作系统上。
2025/3/1 22:26:31 89.95MB opencv
1
《深入理解OpenCV实用计算机视觉项目解析》(高清晰带目录),本书系统地介绍如何使用OpenCV来构建与计算机视觉相关的应用,如增强现实、车牌识别、人脸检测等。
2025/2/24 7:37:58 121.65MB OpenCV 计算机视觉
1
计算机视觉模型、推理课后习题答案
2025/2/20 20:17:40 3.19MB answer
1
非下采样Contourlet变换(NonsubsampledContourletTransform,NSCT)是一种多分辨率分析方法,它结合了小波变换的多尺度特性与Contourlet变换的方向敏感性。
NSCT在图像处理和计算机视觉领域有广泛的应用,如图像压缩、图像增强、噪声去除和图像分割等。
这个“NSCT变换的工具箱”提供了实现NSCT算法的软件工具,对于研究和应用NSCT的人来说,是一个非常实用的资源。
非下采样Contourlet变换的核心在于其能够提供多方向、多尺度的图像表示。
与传统的Contourlet变换相比,NSCT不进行下采样操作,这避免了信息损失,保持了图像的原始分辨率。
这种特性使得NSCT在处理高分辨率图像时具有优势,特别是在保留细节信息方面。
NSCT工具箱通常包含以下功能:1.**NSCT变换**:对输入图像执行非下采样Contourlet变换,将图像分解为多个方向和尺度的系数。
2.**逆NSCT变换**:将NSCT系数重构回原始图像,恢复图像的完整信息。
3.**图像压缩**:利用NSCT的系数对图像进行编码,实现高效的图像压缩。
由于NSCT在高频部分有更好的表示能力,因此在压缩过程中可以有效减少冗余信息,提高压缩比。
4.**图像增强**:通过调整NSCT系数,可以对图像进行有针对性的增强,比如增强边缘或抑制噪声。
5.**噪声去除**:利用NSCT的多尺度和方向特性,可以有效地分离噪声和信号,实现图像去噪。
6.**图像分割**:在NSCT域中,图像的特征更加明显,有助于进行图像区域划分和目标检测。
该工具箱可能还包括一些辅助函数,如可视化NSCT系数、性能评估、参数设置等功能,方便用户进行各种实验和分析。
使用这个工具箱,研究人员和工程师可以快速地实现NSCT相关的算法,并在实际项目中进行测试和优化。
在使用NSCT工具箱时,需要注意以下几点:-输入图像的尺寸需要是2的幂,因为大多数NSCT实现依赖于离散小波变换,而DWT通常要求输入尺寸为二进制幂。
-工具箱可能需要用户自行配置或安装依赖库,例如MATLAB的WaveletToolbox或其他支持小波运算的库。
-NSCT变换的计算复杂度相对较高,特别是在处理大尺寸图像时,可能需要较长的计算时间。
-在处理不同类型的图像时,可能需要调整NSCT的参数,如方向滤波器的数量、分解层数等,以获得最佳性能。
"NSCT变换的工具箱"是一个强大的资源,对于那些希望探索非下采样Contourlet变换在图像处理中的潜力的人来说,这是一个必不可少的工具。
通过深入理解和熟练使用这个工具箱,可以进一步发掘NSCT在各种应用中的价值。
2025/2/20 0:32:26 132KB NSCT工具箱
1
共 191 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡