敏捷开发以用户的需求进化为核心,采用迭代、循序渐进的方法进行软件开发。
在敏捷开发中,软件项目在构建初期被切分成多个子项目,各个子项目的成果都经过测试,具备可视、可集成和可运行使用的特征。
换言之,就是把一个大项目分为多个相互联系,但也可独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态。
因为开发部门同时维护多个版本,多个版本的发布,测试需要大量人力,所以要有一个专业的持续集成工具来管理持续重复的工作。
1)热部署是指在你修改项目BUG的时候对JSP或JAVA类进行了修改在不重启WEB服务器前提下能让修改生效。
但是对配置文件的修改除外。
2)配置tomcat用户名密码,修改tomcat配置
1
团结中文文档工作指南Github使用基础看到廖雪峰的RST文档基础RST文档格式的一个工作流参见当前目录下文档:translation_process.md工作进度参见当前目录下文档:status.md常见问题fork出的仓库如何同步源的内容::如何检查文件(参考)的提交哈希:gitlogfilename.rst文档如何合并:://solidity-cn.rtfd.io是我们的托管地址,readthedocument这个网站是免费的,可以关联多个仓库,并且可以由gitpush触发自动构建,以达到文档更新的目的。
原中文文档更新怎么办:我们需要人去
2025/6/14 1:12:30 173KB ethereum solidity EthereumPython
1
###无线传感器网络时间同步技术综述####引言无线传感器网络(WirelessSensorNetworks,WSN)是一种能够自主构建的网络形式,通过在指定区域内部署大量的传感器节点来实现对环境信息的采集与传输。
这些传感器节点通过无线方式相互连接,并能够形成一个多跳的自组织网络,用于监测特定环境下的数据并将数据发送至远程中心进行处理。
随着WSN在各个领域的广泛应用,如交通监控、环境保护、军事侦察等,确保网络中各节点之间的时间同步变得尤为重要。
####同步技术研究现状时间同步技术是无线传感器网络中的核心技术之一,其主要目的是确保网络中的所有节点能够维持一致的时间基准。
这项技术的发展相对较晚,直到2002年才在HotNets会议上被首次提出。
自那时起,学术界和工业界对此展开了广泛的研究,开发出了一系列有效的时间同步算法。
对于单跳网络而言,时间同步技术已经相当成熟,但在多跳网络环境下,由于同步误差随距离增加而累积,现有的单跳网络同步方法很难直接应用于多跳网络中。
此外,如果考虑到传感器节点可能的移动性,时间同步技术的设计将会变得更加复杂。
####时间同步算法针对无线传感器网络的时间同步需求,研究人员提出了多种算法,其中最具代表性的三种算法分别为泛洪时间同步协议(FloodingTimeSynchronizationProtocol,FTSP)、根时钟同步协议(Root-BasedSynchronization,RBS)以及局部时间同步协议(LocalizedTimeSynchronization,LTS)。
#####泛洪时间同步协议(FTSP)FTSP是一种分布式时间同步算法,它通过在网络中泛洪同步消息来实现节点间的时间同步。
每个节点都会接收到来自邻居节点的时间戳,并据此调整自己的时钟,以减少时钟偏差。
该协议简单易实现,适用于小型网络,但对于大规模网络可能存在较大的同步误差。
#####根时钟同步协议(RBS)RBS协议采用了一个中心节点作为根节点,其他所有节点都需要与根节点保持时间同步。
这种中心化的同步机制能够有效地减少同步误差的累积,但对根节点的依赖性较高,一旦根节点出现故障,整个网络的同步性将受到严重影响。
#####局部时间同步协议(LTS)LTS协议是一种去中心化的同步算法,旨在解决多跳网络中的时间同步问题。
每个节点仅需与其直接邻居节点进行同步,从而减少了全局同步的复杂度。
这种方法适用于动态变化的网络环境,但由于依赖局部信息,可能会导致全局时间偏差的累积。
####小结通过对无线传感器网络中时间同步技术的研究现状及几种典型同步算法的介绍,我们可以看出时间同步技术在WSN中具有重要意义。
虽然目前已经有了一些有效的解决方案,但在实际应用中仍存在诸多挑战,如同步精度、能耗控制以及适应动态网络环境的能力等。
未来的研究工作需要继续探索更高效、更稳定的时间同步机制,以满足日益增长的应用需求。
###基于无线传感器网络的环境监测系统####网络系统简介基于无线传感器网络的环境监测系统是一种利用大量传感器节点实时采集并传输环境数据的系统。
这类系统通常由多个传感器节点组成,这些节点可以监测各种环境参数,如温度、湿度、光照强度等,并将数据传输至中央处理单元进行分析处理。
####网络系统结构-**总体结构**:环境监测系统的核心是传感器节点,它们通过无线方式相互连接,并能够自动构建一个多跳网络。
此外,还需要设置一个或多个会聚节点,用于收集来自传感器节点的数据,并将其转发至数据中心或用户终端。
-**传感器节点结构**:传感器节点通常包含一个或多个传感器、处理器、无线通信模块以及电源供应部分。
这些节点负责数据的采集、处理及发送。
-**会聚节点结构**:会聚节点的主要功能是汇总来自多个传感器节点的数据,并通过有线或无线方式将这些数据传输至远程服务器或用户终端。
会聚节点通常具备更强的计算能力和存储能力,以便支持大数据量的处理和传输。
####应用无线传感器网络的意义无线传感器网络在环境监测方面的应用具有重要意义:-**提高监测精度**:通过部署大量传感器节点,可以实现对环境参数的高密度监测,从而提高数据的准确性和可靠性。
-**降低成本**:相比传统的监测手段,无线传感器网络可以显著降低建设和维护成本。
-**增强实时性**:无线传感器网络能够实时传输数据,使用户能够及时获取环境变化信息,这对于需要快速响应的情况尤为关键。
###学习心得通过本次课程的学习,我对无线传感器网络有了更加深入的理解。
特别是关于时间同步技术的重要性及其在实际应用中的挑战,这不仅加深了我对理论知识的认识,也为将来可能从事的相关工作打下了坚实的基础。
此外,基于无线传感器网络的环境监测系统的介绍让我看到了这项技术在环境保护方面的巨大潜力,激发了我对未来进一步探索的兴趣。
###结语无线传感器网络作为一种新兴的技术,在多个领域展现出巨大的应用前景。
时间同步技术作为其核心组成部分之一,对于保证网络性能至关重要。
随着技术的进步,相信未来的无线传感器网络将更加完善,为人们的生活带来更多便利。
2025/5/7 17:13:57 191KB
1
码头工人文件这是一个存放我创建的映像的各种Dockerfile的存储库。
目录关于几乎所有这些活对下dockerhub的。
因为您无法在dockerhub上将公证与自动构建一起使用,所以我还将在的私有注册表上持续构建这些以供公共下载。
(别客气。
)资源资源我的点文件您可能还需要检出我的,特别是所有这些文件的别名,它们在这里:。
贡献我尝试确保每个Dockerfile的顶部都有一个命令来记录运行该文件,如果您正在查看的文件没有命令,请拉取该命令!使用Makefile$makehelpbuildBuildsallthedockerfilesintherepository.dockerfilesTeststhechangestotheDockerfilesbuild.imageBuildaDockerfile(ex.DIR=telnet).latest-versions
2025/3/13 0:43:01 2.66MB linux shell bash docker
1
MyCrypto下载最新版本开发者如果您想贡献,请查看主人是工作/开发部门gh-pages仅包含较小的dist文件夹,并提供给MyCrypto.com如果您出于某种原因想玩这个游戏:首先,将存储库和cd克隆到工作目录中。
然后...$npminstall$npmrundev在浏览器中打开生成的dist/index.html文件。
Gulp将在保存后自动构建它。
准备生产$gulpprep$gulpzipit执照改编自版权所有(c)2015-2017MyEtherWalletLLC版权所有(c)2018MyCrypto,Inc.
2025/1/7 6:56:30 2.39MB angularjs ethereum foss free-software
1
海豚确实是非常好用的快速开发框架,模块化开发,插件扩展,自动构建器可以快速实现后台业务逻辑呈现而不必去纠结繁琐的html模板引擎样式等耗时间而不得不做的工作量,年初到现在一直在开发小程序后台和app的相关接口,最开始是直接使用home来做接口,接口需要做数据签名和验签,并且输出是json,用来一段时间始终感觉不太方便,当一个模块后端,前台,接口都需要的时候就不太好规划目录,写在一起显得凌乱。
为此我重新规划了一下接口的开发方式,其实也就是仿照admin.php的方式来做。
2024/12/31 14:15:38 15.81MB php 快速开发 海豚php DophinPHP
1
开发训练Devops培训fis再次通过pollscm测试自动构建使用webhook1进行测试
2024/8/31 13:10:44 60KB Java
1
Ubuntu炊具这是受ubuntu-old-hashioned和ubuntu-bartender启发的自动UbuntuUWP构建系统。
这允许自动构建UbuntuUWP,并输出本地构建(.appxbundle)和仅上传包(.appxupload)。
这支持MicrosoftStore上的所有当前版本:Windows社区上的Ubuntu预览(insider)Windows上的Ubuntu(lts)Ubuntu20.04LTS(focal)Ubuntu18.04LTS(bionic)Ubuntu16.04LTS(xenial)*:Ubuntu16.04LTS被隐藏,因为它已经停产,因此很快就会从商店中撤出。
仍然保留构建脚本,以便将来可能获得扩展支持。
要求以下是建筑环境的要求:启用了WSL和Virutal
2024/6/20 16:02:19 17KB PowerShell
1
上期我们讲述了如何通过Rancherwebhook微服务实现Service/Host的弹性伸缩.这期我们再来讲一下通过Rancherwebhook对接三方的CI系统,如何实现微服务服务镜像的自动构建与升级。
PS:CI即持续集成,包括但不限于自动编译、发布和测试、自动构建,我们这里说的CI系统仅限于自动构建这一步。
上期已经对webhook做了介绍,这里不再讲解,整个升级流程如下图所示:
2024/6/17 13:12:24 2.94MB rancher webhook
1
Flynn是一个开源的PaaS平台,可自动构建部署任何应用到Docker容器集群上运行,其功能特性与组件设计大量参考了传统的PaaS平台Heroku。
本文旨在从使用动机、基本对象、层次架构、功能组件、基本工作流这几个方面对Flynn做总体的介绍。
为了便于理解Flynn的作用与功能,让我们先来看看应用程序从开发到构建再到部署再到运行分别需要经历的几个实体状态:更具体一点,以一个Java程序为例来描述:源代码:包括*.java、log4j.properties、pom.xml等文件。
发布包:源代码被编译打包后生成一个JAR包,这个就是发布包。
部署配置:比如每个进程的启动命令、环境变量、系统属性等。
2024/4/23 18:30:48 220KB Flynn初探:基于Docker的PaaS平台
1
共 14 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡