本文讨论了蓝-绿激光技术的现状和将来的可能性。
着重于讨论对海洋光学可能最有用的激光器的发展状况。
历来,氩离子激光器实质上被用于要求相干连续光源的所有水下实验中,而倍频Nd:YAG激光器则提供了脉冲式的蓝-绿辐射。
这两种激光器都不适合高平均功率场合使用。
对于高脉冲能量具有头等重要意义的应用来讲,目前最好的待选者是闪光灯泵浦的染料激光器。
对于需要5~20亳微秒脉冲的测距选通应用,铜蒸汽激光器是最接近的选取者。
适合这两种应用的单脉冲激光器还没有。
具有适当效率的连续波激光器也没有。
随着紫外/可见分子气体激光器的发展,可能满足多数海洋光学需要的单台蓝-绿光源将在3至5年内出现。
有希望的器件,包括KrF激光和XeF激光泵浦的蓝-绿染料激光器以及XeF激光输出的喇曼降频变换。
还找出了几种较长期可能实现的蓝-绿带内分子气体激光器。
2024/7/28 6:07:11 5.83MB
1
一种近距离脉冲激光测距仪的设计,包括硬件设计和软件设计方案
2024/3/26 2:46:22 4.34MB 激光测距
1
用脉冲激光沉积技术制备了钛酸锶钡(Ba0.5Sr0.5TiO3)薄膜。
用X射线光电子能谱和原子力显微镜分别分析了薄膜的化学组分和表面形貌。
在交流信号为50mV和100kHz时测量了薄膜的介电系数和介电损耗随外加电场的变化关系,得出最高的介电可调率达到45%。
利用单光束纵向Z扫描的方法研究了薄膜的非线性光学性质,得到非线性折射率为5.04×10-6cm2/kW,非线性吸收系数为3.59×10-6m/W,测量所用光源的波长为532nm,脉宽为55ps,表明Ba0.5Sr0.5TiO3薄膜有较快的非线性光学响应。
2024/2/2 14:45:37 1.28MB 薄膜光学 脉冲激光 介电系数
1
为了实现无损检测,经常在生产中使用超高速全息照相。
但检测物(例如发动机或工作零件内部的检测)往往不总是很容易接近的。
这个障碍已由圣·路易德法联合研究所的F.Albe和H.Fagot两人消除,此法证实使用超短脉冲激光以很高功率密度在光纤中传输的超高速全息照相确实可行,虽然超短脉冲激光能使相干长度减小,频率展宽,甚至有时使光纤损坏,但使用脉宽20ns、输出能量20mJ的倍频YAG激光时,用单模参考光纤和直径为1nm的光纤(长为1m)照明物体。
他们以此成功地拍摄了两张全息照相,其第一个脉冲在物体振动后1.8ms,二次曝光间隔40μs。
实现全息照相内窥镜现也有所考虑。
2024/1/4 5:52:35 1.28MB
1
激光强化工程应用对硬化层深度、宽度和均匀性等强化参数有明确要求,激光强度空间分布是影响硬化层均匀性的重要因素。
针对二维点阵光斑的强度空间分布提出一种半定量的数学模型,从均匀温度场出发,使每个小光斑处其余小光斑对其能量贡献相等,从而求出各个小光斑的强度比。
给出3×3和5×5点阵分布光斑情形下激光强度空间分布的反求算例。
使用有限元模拟和实验结果对此反求算法进行了验证。
结果表明,此反求算法得出的二维点阵空间强度分布优化了硬化层均匀性。
1
基于ANSYS有限元阐发的脉冲激光加热的建模与仿真召唤流
2023/5/6 19:43:53 23KB 脉冲 加热 有限元
1
基于FPGA的激光短途测距仿其实验,搜罗原理方式,以及脉冲激光移向鉴相测距机的总体方案
2023/4/18 21:29:40 678KB FPGA 激光 测距
1
付与三级主振荡功率放大(MOPA)结构,建树了一台平均输入功率30W的皮秒脉冲掺镱光纤激光器。
其输入尾纤芯径为30μm,输入激光脉宽约20ps,重复频率为59.8MHz,光束品质因子M2小于1.5。
将该高功率脉冲激光耦合到芯径7μm的国产光子晶体光纤(PCF)中,实现为了近3W的超络续谱输入。
为了削减耦合功能并防止光纤端面伤害,在皮秒激光源与光子晶体光纤之间加之一段芯径15μm的过渡光纤,患上到的输入超络续谱具备很好的平展性。
-10dB谱宽逾越1100nm(其中1064nm处残留的激光峰除了外),逾越所用光谱仪600-1700nm的视察规模。
输入光斑为一带有六角形玄色包络的血色基模光斑。
2023/3/30 6:28:56 3.27MB 激光器 光纤光学 放大器 皮秒脉冲
1
聚焦普通脉冲钕玻璃激光于未电极化的锆钛酸系(PZT)陶瓷薄片上,在激光击穿样品之前,样品两表面银电极间无电信号出现.但是,一旦样品被光击穿,电极间就会出现脉冲电信号.在电极接线保持不变的情况下,光从前后两表面入射而击穿样品时,所产生的电信号极性正相反.在穿孔较小时所产生的电信号极性是逆光方向,但在穿孔大到适当值时信号极性变为顺光方向.
2023/3/14 0:20:36 3.11MB 论文
1
脉冲激光器原理图,pcb材料,有问题联系我qq296758762.。






























2023/2/3 22:01:53 82KB 脉冲激光器 原理图
1
共 12 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡