一个基于LIBSVM的股票价格预测程序,采用随机森林算法对样本进行训练和预测,使用的编程语言为JAVA。
2024/11/16 2:12:13 6.22MB 股票价格预测 LIBSVM
1
MATLAB实现股票价格预测源程序代码股票价格走势预测及其MATLAB实现
2023/12/18 14:14:08 499B MATLAB 股票 价格 预测
1
压缩包内含:基于LSTM的股票价格预测_数据+代码+报告,可以最为数据挖掘的大作业。
股票作为人民金融投资的普遍方式,如何在股票中赚钱成为股民的共同目标。
要想在股票买卖中赚钱便要掌握股票的走势,因此股票价格预测工作引起社会及学术界的广泛关注。
股票的走势随市场变动,而且受诸多因素影响,如国际环境,政策变化,行业发展,市场情绪等等,这使得股民很难预测股票的走势。
理论上,根据股票以往的价格走势,可以预测股票的未来走势。
因为股票预测是高度非线性的,这就要预测模型要能够处理非线性问题,并且,股票具有时间序列的特性,因此适合用循环神经网络对股票进行预测。
虽然循环神经网络(RNN),允许信息的持久化,然而,一般的RNN模型对具备长记忆性的时间序列数据刻画能力较弱,在时间序列过长的时候,因为存在梯度消散和梯度爆炸现象RNN训练变得非常困难。
Hochreiter和Schmidhuber提出的长短期记忆(LongShort-TermMemory,LSTM)模型在RNN结构的基础上进行了改造,从而解决了RNN模型无法刻画时间序列长记忆性的问题。
因此,本文基于LSTM实现一个股票价格预测模型。
2023/2/23 2:23:41 1.03MB 数据挖掘 python 机器学习 LSTM
1
股票价格预测-LSTM-TCN-GBDT运用四种算法(LSTM,TCN,GRU,GBDT)进行股票价格的预测和预测结果的检验。
2022/10/28 5:04:15 474KB lstm gru gbdt tcn
1
支持向量机(supportvectormachine,SVM)是数据挖掘中的一项新技术,是借助于最优化方法解决机器学习问题的新工具。
它成为克服“维数灾难”和“过学习”等传统困难的有效办法,虽然他还处在飞速发展的阶段,但它的理论基础和实现途径的基本框架已经构成。
支持向量机目前主要用来解决分类问题(模式识别,判别分析)和回归问题。
而股市行为预测通常为预测股市数据的走势和预测股市数据的未来数值。
而当我们将走势看作两种状态(涨、跌),问题便转化为分类问题,而预测股市未来的价格是指为典型的回归问题。
我们有理由相信支持向量机可以对股市进行预测。
本报告是支持向量机对股票价格预测应用报告的综述,旨在于介绍预测股票价格走势的SVM简单预测模型。
该模型可以用来预测未来若干天股票价格的大体走势,这对于股票投资可以起到很好的指导性作用。
2018/9/1 10:39:25 999KB 支持向量机 股票预测
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡