第1章课程导学对课程整体进行介绍,并且说明HTTP协议的重要性,以及学习的必要性。
1-1导学1-2内容介绍第2章HTTP协议基础及发展历史本章主要介绍什么是HTTP协议,HTTP协议的发展历史,以及HTTP协议的底层--网络分层协议。
在本章中你将学习到HTTP协议的基础内容,并理解为什么会产生HTTP协议,以及他的优劣势。
2-15层网络模型介绍2-2HTTP协议的发展历史2-3HTTP的三次握手2-4URI-URL和URN2-5HTTP报文格式2-6创建一个最简单的web服务第3章HTTP各种特性总览本章主要讲解HTTP协议中各种头信息的作用,包括但不限于最重要的几个部分:缓存、cookie、CORS跨域、长连接等,课程中会配合实际的例子展示这些HTTP头是如何发挥作用的,并且解决了什么问题。
3-1认识HTTP客户端3-2CORS跨域请求的限制与解决3-3CORS跨域限制以及预请求验证3-4缓存头Cache-Control的含义和使用3-5缓存验证Last-Modified和Etag的使用3-6cookie和session3-7HTTP长连接3-8数据协商3-9Redirect3-10CSP第4章Nginx代理以及面向未来的HTTP本章主要实战Nginx配置各种面向未来的HTTP服务,首先会介绍Nginx的安装和基本配置,其次是配置Nginx的缓存功能来展示给大家看代理缓存相较于客户端缓存的好处。
最后这章中我们还讲解来HTTPS协议以及HTTP2,他们各是什么,有什么优点。
...4-1Nginx安装和基础代理配置4-2Nginx代理配置和代理缓存的用处4-3HTTPS解析4-4使用Nginx部署HTTPS服务4-5HTTP2的优势和Nginx配置HTTP2的简单使用第5章课程总结对课程整体再进行一个回顾5-1课程总结
2024/12/5 10:16:16 54B HTTP 计算机网络 UDP TCP/IP
1
南阳陶岔作为南水北调中线工程的渠首闸所在地,掌握其水质变化情况、预防污染事件的发生至关重要。
基于环保部门的水质检测数据,选取pH、溶解氧、高锰酸盐指数、氨氮作为研究指标,通过主成份加权分析模型和BP神经网络模型,对陶岔的水质进行了有效的评价和较高精度的预测。
结果表明,陶岔水质总体较好,可达II级以上,评价准确率为81.25%;
预测的最大误差为4.75%,平均误差0.7%,预测精度较高。
1
复杂网络中基本网络模型的matlab实现,包括随机图模型、SW模型、NW模型、BA模型以及度分布、集聚系数、最短路径的计算。
2024/10/13 8:13:51 10KB 复杂网络 模型 matlab
1
使用BP算法的神经网络手写体数字识别,使用Python语言编写,包含四个文件:训练模块,测试模块,图像显示模块还有一个最简单的神经网络模型。
希望对大家有帮助。
(更改了上一版的一点注释错误)
2024/9/24 22:07:17 3KB Python 神经网络 BP算法
1
风电场风速预测的RBF神经网络模型,介绍了风电场风速预测的方法,建立了RBF神经网络模型,提前1h预测,并把结果与BP方法进行对比
2024/8/31 14:46:32 217KB 风速 预测
1
完整的PDF版 第1章绪论  1.1从生物神经网络到人工神经网络  1.2人工神经网络的发展史  1.3人工神经网络的应用  1.4生物神经元  1.5人工神经元模型  1.6神经网络的结构  1.7神经网络的特点  1.8神经网络的学习方式  第2章MATLAB神经网络工具箱中的神经网络模型  2.1MATLAB工具箱的神经元模型  2.2MATLAB工具箱中的神经网络结构  2.3MATLAB神经网络工具箱中的网络对象及其属性  2.3.1网络对象属性  2.3.2子对象属性  第3章感知器  3.1感知器神经元及感知器神经网络模型  3.2感知器的学习  3.3感知器的局限性  3.4单层感知器神经网络的MATLAB仿真程序设计  3.5多层感知器神经网络及其MATLAB仿真  3.6感知器应用于线性分类问题的进一步讨论  第4章线性神经网络  4.1线性神经网络模型  4.2线性神经网络的学习  4.3线性神经网络的MATLAB仿真程序设计  4.3.1线性神经网络设计的基本方法  4.3.2线性神经网络的设计例程  第5章BP网络  5.1BP神经元及BP网络模型  5.2BP网络的学习  5.2.1BP网络学习算法  5.2.2BP网络学习算法的比较  5.3BP网络泛化能力的提高  5.4BP网络的局限性  5.5BP网络的MATLAB仿真程序设计  5.5.1BP网络设计的基本方法  5.5.2BP网络应用实例  第6章径向基网络  6.1径向基网络模型  6.2径向基网络的创建与学习过程  6.3其他径向基神经网络  6.4径向基网络的MATLAB仿真程序设计  第7章竞争型神经网络  7.1竞争型神经网络模型  7.2竞争型神经网络的学习  7.3竞争型神经网络存在的问题  7.4竞争型神经网络的MATLAB仿真程序设计  第8章自组织神经网络  8.1自组织特征映射神经网络模型  8.2自组织特征映射神经网络的学习  8.3学习向量量化神经网络模型  8.4学习向量量化神经网络的学习  8.5LVQ1学习算法的改进  8.6LVQ神经网络的MATLAB仿真程序设计  第9章反馈型神经网络  9.1Elman神经网络  9.2Hopfield神经网络  9.3反馈神经网络的MATLAB仿真程序设计  第10章图形用户界面  10.1图形用户界面简介  10.2图形用户界面应用示例  10.3图形用户界面的其他操作  第11章Simulink  11.1Simulink神经网络仿真模型库简介  11.2Simulink应用示例  第12章自定义网络  12.1自定义神经网络  12.1.1自定义神经网络的创建  12.1.2自定义神经网络的初始化、训练与仿真  12.2自定义函数  附录A神经网络工具箱函数  参考文献
1
深度学习常用网络pytorch代码整理合集包括AlexNet,LeNet,NiNet,ResNet,VGGNet
1
受克隆选择理论和免疫网络模型的启发,我们提出了一种新的人工免疫算法,称为免疫记忆克隆算法(IMCA)。
首先讨论了受免疫系统启发的克隆操作员。
IMCA包括两个基于不同免疫记忆机制的版本;
它们是自适应免疫记忆克隆算法(AIMCA)和免疫记忆克隆策略(IMCS)。
在AIMCA中,每种抗体的突变率和存储单位大小会动态调整。
IMCS同时实现抗体种群和存储单元的进化。
通过使用克隆选择运算符,可以将全局搜索与局部搜索有效地结合在一起。
根据抗体-抗体(Ab-Ab)亲和力和抗体-抗原(Ab-Ag)亲和力,IMCA可以自适应地分配存储单元的大小和抗体群体。
在实验中,使用了18个多维函数,维数范围从2到1000,以及组合优化问题,例如旅行商和背包问题(KPs),以验证IMCA的性能。
给出了每次迭代的计算成本。
实验结果表明,IMCA具有较高的收敛速度,并且在增强种群多样性和一定程度上避免过早收敛方面具有很强的能力。
从理论上讲,IMCA以概率1收敛。
2010高等教育出版社和施普林格出版社柏林海德堡。
2024/8/4 1:19:22 807KB Artificial Immune System ;
1
乳腺癌病理图像的自动分类具有重要的临床应用价值。
基于人工提取特征的分类算法,存在需要专业领域知识、耗时费力、提取高质量特征困难等问题。
为此,采用一种改进的深度卷积神经网络模型,实现了乳腺癌病理图像的自动分类;同时,利用数据增强和迁移学习方法,有效避免了深度学习模型受样本量限制时易出现的过拟合问题。
实验结果表明,该方法的识别率可达到91%,且具有较好的鲁棒性和泛化性
2024/8/3 5:11:41 632KB 深度学习 图像识别
1
PID电机控制目录第1章数字PID控制1.1PID控制原理1.2连续系统的模拟PID仿真1.3数字PID控制1.3.1位置式PID控制算法1.3.2连续系统的数字PID控制仿真1.3.3离散系统的数字PID控制仿真1.3.4增量式PID控制算法及仿真1.3.5积分分离PID控制算法及仿真1.3.6抗积分饱和PID控制算法及仿真1.3.7梯形积分PID控制算法1.3.8变速积分PID算法及仿真1.3.9带滤波器的PID控制仿真1.3.10不完全微分PID控制算法及仿真1.3.11微分先行PID控制算法及仿真1.3.12带死区的PID控制算法及仿真1.3.13基于前馈补偿的PID控制算法及仿真1.3.14步进式PID控制算法及仿真第2章常用的PID控制系统2.1单回路PID控制系统2.2串级PID控制2.2.1串级PID控制原理2.2.2仿真程序及分析2.3纯滞后系统的大林控制算法2.3.1大林控制算法原理2.3.2仿真程序及分析2.4纯滞后系统的Smith控制算法2.4.1连续Smith预估控制2.4.2仿真程序及分析2.4.3数字Smith预估控制2.4.4仿真程序及分析第3章专家PID控制和模糊PID控制3.1专家PID控制3.1.1专家PID控制原理3.1.2仿真程序及分析3.2模糊自适应整定PID控制3.2.1模糊自适应整定PID控制原理3.2.2仿真程序及分析3.3模糊免疫PID控制算法3.3.1模糊免疫PID控制算法原理3.3.2仿真程序及分析第4章神经PID控制4.1基于单神经元网络的PID智能控制4.1.1几种典型的学习规则4.1.2单神经元自适应PID控制4.1.3改进的单神经元自适应PID控制4.1.4仿真程序及分析4.1.5基于二次型性能指标学习算法的单神经元自适应PID控制4.1.6仿真程序及分析4.2基于BP神经网络整定的PID控制4.2.1基于BP神经网络的PID整定原理4.2.2仿真程序及分析4.3基于RBF神经网络整定的PID控制4.3.1RBF神经网络模型4.3.2RBF网络PID整定原理4.3.3仿真程序及分析4.4基于RBF神经网络辨识的单神经元PID模型参考自适应控制4.4.1神经网络模型参考自适应控制原理4.4.2仿真程序及分析4.5基于CMAC(神经网络)与PID的并行控制4.5.1CMAC概述4.5.2CMAC与PID复合控制算法4.5.3仿真程序及分析4.6CMAC与PID并行控制的Simulink仿真4.6.1Simulink仿真方法4.6.2仿真程序及分析第5章基于遗传算法整定的PID控制5.1遗传算法的基本原理5.2遗传算法的优化设计5.2.1遗传算法的构成要素5.2.2遗传算法的应用步骤5.3遗传算法求函数极大值5.3.1遗传算法求函数极大值实例5.3.2仿真程序5.4基于遗传算法的PID整定5.4.1基于遗传算法的PID整定原理5.4.2基于实数编码遗传算法的PID整定5.4.3仿真程序5.4.4基于二进制编码遗传算法的PID整定5.4.5仿真程序5.5基于遗传算法摩擦模型参数辨识的PID控制5.5.1仿真实例5.5.2仿真程序第6章先进PID多变量解耦控制6.1PID多变量解耦控制6.1.1PID解耦控制原理6.1.2仿真程序及分析6.2单神经元PID解耦控制6.2.1单神经元PID解耦控制原理6.2.2仿真程序及分析6.3基于DRNN神经网络整定的PID解耦控制6.3.1基于DRNN神经网络参数自学习PID解耦控制原理6.3.2DRNN神经网络的Jacobian信息辨识6.3.3仿真程序及分析第7章几种先进PID控制方法7.1基于干扰观测器的PID控制7.1.1干扰观测器设计原理7.1.2连续系统的控制仿真7.1.3离散系统的控制仿真7.2非线性系统的PID鲁棒控制7.2.1基于NCD优化的非线性优化PID控制7.2.2基于NCD与优化函数结合的非线性优化PID控制7.3一类非线性PID控制器设计7.3.1非线性控制器设计原理7.3.2仿真程序及分析7.4基于重复控制补偿的高精
2024/7/16 13:07:56 5.56MB PID
1
共 95 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡