MatLab强化学习代码包,使用深度Q学习(神经网络)控制倒立摆的代码。
详细说明可参看我的专栏《强化学习与控制》https://blog.csdn.net/weixin_43723517/category_9676083.html"IthoughtwhatI'ddowasI'dpretendIwasoneofthosedeaf-mutes,orshouldI?"
2024/11/26 22:58:24 5KB MatLab 神经网络 机器学习 倒立摆
1
多负载下海上平台的基于变形变换的网络控制器
2024/11/7 16:28:38 256KB 研究论文
1
本项目是一个基于安卓的智能家居项目源码,项目通过Zigbee网络控制采集家居设备实现管理功能。
小米智能家庭套装也是选择的ZigBee协议。
简单的说,ZigBee是一种高可靠的无线数传网络,类似于CDMA和GSM网络。
ZigBee数传模块类似于移动网络基站。
通讯距离从标准的75m到几百米、几公里,并且支持无限扩展。
与移动通信的CDMA网或GSM网不同的是,ZigBee网络主要是为工业现场自动化控制数据传输而建立,因而,它必须具有简单,使用方便,工作可靠,价格低的特点。
而移动通信网主要是为语音通信而建立,每个基站价值一般都在百万元人民币以上,而每个ZigBee“基站”却不到1000元人民币。
本项目包括手机版和pad版,手机版有点问题,登陆即崩,需要自己排查。
pad版可以正常登陆,用户名admin密码123456。
2024/11/5 3:55:21 13.65MB 智能家居 Zigbee技术
1
精通MATLAB/Simulink系统仿真2015全书主要分为三大部分,共15章。
第一部分主要介绍MATLAB基础知识、Simulink仿真入门、Simulink模型的建立与仿真、Simulink常用命令库分析等;
第二部分主要为基于Simulink的S-Function建模、控制系统Simulink仿真、基于PID的控制系统仿真等;
第三部分则涉及Simulink高级应用,包括模糊逻辑控制仿真、电力系统仿真、通信系统仿真、神经网络控制仿真、滑模控制、车辆系统仿真、群智能算法控制系统仿真等此资源为该书的书上例子代码(全)
2024/10/22 9:49:48 2.29MB MATLAB Simulink 源代码
1
Truetime是一种基于Matlab/Simulink的联合仿真工具。
1999年瑞典LUND工学院的MartinAnderson,DanHenrikesson和AntonCervin等学者针对网络控制系统的仿真,合作开发了Truetime工具箱。
利用这种工具箱可以构建分布式实时控制系统的动态过程、控制任务执行以及网络交互的联合仿真环境,在该仿真环境中,可以研究各种调度策略和网络协议对系统或网络性能的影响。
2024/9/15 4:14:32 14.05MB truetime
1
具有随机发生的延迟和部分已知的分布传输延迟的奇异网络控制系统的故障检测
2024/9/9 16:58:02 361KB 研究论文
1
自己做的一个基于神经网络控制的一级倒立摆系统,效果十分理想
2024/7/13 13:52:27 91KB matlab 一级倒立摆 nn
1
摘要:软件定义网络(SDN)是现代备受关注的新型网络体系结构之一,正逐步革新现存的传统网络体系结构。
数据平面和控制平面的解耦和、网络控制的逻辑集中、用于数据转发策略的流抽象以及网络的编程能力是SDN的4个主要基本概念。
介绍了SDN的发展背景及其缘起;描述了SDN体系结构,并从SDN三层架构出发分析SDN的3个平面、OpenFlow接口以及工作原理,贯穿了SDN的4个主要基本概念,展望了SDN的发展趋势。
868KB 网络
1
东北大学网络控制系统课程Truetime工具箱仿真源程序
2024/6/13 3:40:44 87KB truetime 网络控制系统
1
【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
共 42 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡