随着人们对基于位置的服务(LocationBasedService,LBS)需求日益增大,以及无线通信技术的快速发展,无线定位技术成为了一个研究热点。
人们在室外广泛使用目前较成熟的GPS,A-GPS等定位系统进行定位,但是在复杂的室内环境中,这些技术的定位精度不高,不能满足室内定位的需求。
WIFI网络具有通信快速、部署方便的特点,它在室内场所广受欢迎.Android系统从几年前发布以来在智能手机操作系统市场占有率不断升高,成为目前使用最为广泛的智能手机操作系统,同时Android移动终端自身具备WIFI无线连接功能。
指纹定位算法以其独特的优势减小了对室内难以精确定义的信号传播模型的依赖性,成为定位技术中的一个研究热点。
基于此,本课题重点研究并改进指纹定位算法,设计实现基于Android的WIFI室内定位系统。
首先,通过阅读大量相关的文献资料,对比分析了当前国内外WIFI室内指纹定位技术的研究现状对其中涉及到的相关技术的原理和特点进行介绍分析,包括WIF1无线通信技术,室内无线定位技术以及位置指纹定位技术,并根据室内WIFI指纹定位技术的特征对定位过程中的影响因素进行分析。
其次,根据前面提到的定位过程中的关键影响因素,介绍了对应的解决方案。
分析与研究了几种典型的指纹定位算法,包括最近邻法(NN).K近邻法(KNN)、K加权近邻法(WKNN),并提出算法的改进方案,使用MATLAB软件进行算法的仿真分析,寻求其中的最佳参数值以及定位性能差异。
通过分析几种算法的性能仿真结果,拟定了基于最强AP法的改进算法作为定位系统采纳的算法。
然后,通过对基于Android的WIFI室内定位系统的需求分析,提出了一种基于Android的WIF1室内定位系统设计方案。
接着介绍了定位系统软件开发环境,并设计了定位系统总体架构,以及定位系统的各个功能模块。
在各项设计确定以后,采用JAVA语言编程实现定位系统的各项功能。
最后,搭建了WIFI室内定位实验环境,使用完成的室内定位系统结合硬件资源,在实验环境下,进行离线阶段创建数据库以及在线阶段的定位测试,并记录呈现在定位客户端上定位结果,分析对应的定位性能.
2025/4/17 12:51:17 23.89MB Android WIFT 指纹定位算法 定位系统
1
本文档中包含了关于深度学习的源代码,用matlab编写,有测试实例并且有相应结果输出,深度信念网络、卷积神经网络、自编码器、NN网络等可用代码,经测试没有任何错误可以直接下载运行!
2024/11/15 15:02:02 14.06MB 深度学习
1
有深度学习中必读经典,以及相应的matlab代码。
此外,文章中本人做的笔记,希望能帮助大家更好的理解。
文章为:1.Afastlearningalgorithmfordeepbeliefnets(Hinton)2.LearningDeepArchitecturesforAI(Bengio)3.APracticalGuidetoTrainingRestrictedBoltzmannMachines(Hinton)等。

code为经典的deeplearningtool(matlab版),有DBN,NN,CNN,etc。
2024/10/27 20:22:57 31.2MB 深度学习 经典文章 matlab 笔记
1
CAE,CNN,NN,SAE等等matlab版深度学习算法合集,以及相关测试数据,拿到就能直接用。
2024/9/29 12:11:21 28.34MB DeepLearning 合集 算法 深度学习
1
摘要—本文首次解决了这个问题一类不确定随机变量的自适应输出反馈控制方法时变时滞的非线性严格反馈系统使用神经网络(NNs)。
圆判据适用于设计一个非线性观测器,没有线性增长条件取决于系统状态,将其强加于非线性函数。
假设系统中存在时变延迟输出,仅采用NN来补偿所有未知数非线性项取决于延迟输出,因此,提出的控制算法比现有的算法更简单描述了不确定系统的NN反推控制方案用常微分方程举三个例子证明在中提出的控制方案的有效性这篇报告。
2024/8/9 16:53:57 287KB 研究论文
1
算法是建立在离线传播模型下,不考虑多径效应,反射,折射等对信号强度有损耗的情况,算法中选用了NN,KNN,WKNN等几种常用的指纹定位算法。
2024/7/30 11:25:27 3KB matlab
1
机器学习入门到精通50天,python代码编写,1.数据预处理2.简单线性回归3.多元线性回归4.逻辑回归5.k近邻法(k-NN)6.支持向量机(SVM)7.决策树8.随机森林9.K-均值聚类10.层次聚类
2024/7/23 1:49:07 83B python 机器学习 逻辑回归 决策树
1
具有规定性能的非线性时滞系统的分散输出反馈自适应NN跟踪控制
2024/3/10 19:33:48 995KB 研究论文
1
有句俗话叫“三天打渔,两天晒网”。
如果小爱前三天打渔,后两天晒网,一直重复这个过程,那么在第nn天,它是在打渔还是晒网呢?
2024/3/6 20:18:21 238B c++
1
针对神经网络算法在当前PM2.5浓度预测领域存在的易过拟合、网络结构复杂、学习效率低等问题,引入RFR(randomforestregression,随机森林回归)算法,分析气象条件、大气污染物浓度和季节所包含的22项特征因素,通过调整参数的最优组合,设计出一种新的PM2.5浓度预测模型——RFRP模型。
同时,收集了西安市2013--2016年的历史气象数据,进行模型的有效性实验分析。
实验结果表明,RFRP模型不仅能有效预测PM2.5浓度,还能在不影响预测精度的同时,较好地提升模型的运行效率,其平均运行时间为O.281S,约为BP-NN(backpropagationneuralnetwork,BP神经网络)预测模型的5.88%。
2024/3/5 9:44:07 1.18MB 回归分析
1
共 45 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡