全液压伺服转向系统是现代机械设备,尤其是重型车辆和工程机械中广泛应用的一种高级转向技术。
这种系统以其高精度、响应快速和良好的动态性能而受到青睐。
在教学中,了解和掌握全液压伺服转向系统的原理、结构及操作是提升学生技能的重要环节。
下面我们将详细探讨这个主题。
全液压伺服转向系统的核心在于其利用液压动力来实现车辆或设备的精确转向。
系统主要包括以下几个关键组成部分:1. **动力源**:通常由发动机驱动的液压泵,它为整个系统提供高压油液,是能量的来源。
2. **转向阀**:控制液压油流向的元件,可以根据驾驶员的转向需求调节油液的压力和流向,实现车轮的转向。
3. **伺服机构**:伺服缸或伺服马达是伺服转向系统的关键,它接收来自转向阀的油压信号,并转化为机械运动,帮助驾驶员轻松转动方向盘。
4. **反馈机构**:通常是一个位置传感器,用于检测转向器的位置并提供反馈给控制系统,确保转向的准确性和稳定性。
5. **控制系统**:包括电子控制器和必要的传感器,如压力传感器和速度传感器,用于监控系统状态,确保液压伺服转向系统的高效运行。
6. **液压管路**:连接各个组件,输送液压油,确保油液的流动。
教学台架的设计是为了让学生能够直观地理解全液压伺服转向系统的运作过程。
它通常包括实物模型、模拟软件以及各种实验和测试设备。
通过实物模型,学生可以观察到液压油的流动路径和各部件的交互作用;
模拟软件则提供了一个虚拟环境,让学生模拟不同工况下的转向情况,深入理解系统的动态特性;
实验和测试设备则允许学生实际操作,检验理论知识。
在“一种全液压伺服转向系统教学台架.pdf”文档中,可能涵盖了以下内容:- 系统的基本结构和工作原理- 各部分的功能详解- 系统的安装与调试步骤- 故障诊断和排除方法- 安全操作规范- 实验项目和教学指导这样的教学资源对于学生来说,不仅可以深化理论知识的理解,还能提升实践操作能力,为未来从事相关行业的工作打下坚实基础。
通过实际操作和学习,学生可以更好地理解液压伺服转向系统如何在不同工况下提供稳定的转向性能,以及如何通过调整参数优化系统的响应和效率。
2025/6/15 22:15:20 928KB
1
操作系统课程设计报告的目标是模拟构建一个多用户多级目录的文件系统,这有助于深入理解文件系统内部的功能和实现机制。
在这一设计中,我们将探讨以下几个关键知识点:1.**文件存储空间管理**:为了实现文件系统,我们需要在内存中创建一个虚拟磁盘空间,模拟实际的磁盘存储。
文件的物理存储可以通过显式链接或者其他方法实现,如连续分配、链接分配或索引分配等。
显式链接允许通过指针跟踪文件在磁盘上的分布。
2.**位示图管理**:位示图是一种有效管理磁盘空闲空间的方法,它用二进制位表示磁盘上的每个扇区是否被占用。
如果结合显式链接分配,位示图可以集成到FAT(文件分配表)中,方便查找和管理空闲空间。
3.**多级目录结构**:文件目录结构应支持多用户和多级目录,这意味着每个用户都可以有自己的私有文件和子目录。
目录项包含文件名、物理地址、长度等信息,同时提供访问控制,以实现读写保护。
4.**文件操作**:设计的文件系统需要实现一系列基本的文件操作,包括用户登录(login)、系统初始化、文件创建(create)、打开(open)、读取(read)、写入(write)、关闭(close)、删除(delete)、创建目录(mkdir)、改变当前目录(cd)、列出文件目录(dir)以及退出(logout)。
5.**用户界面**:设计一个实用的用户界面至关重要,因为它使得用户可以方便地进行各种文件操作。
这通常涉及到命令行接口或图形用户界面的设计。
6.**编程语言**:可以选择C++或C等编程语言来实现这个文件系统,这些语言提供了底层操作系统的接口,便于直接与硬件交互。
7.**系统分析、设计与实现**:设计者需要独立完成系统的需求分析、设计、编码和测试。
设计报告应详尽记录整个过程,以便于评估和后续改进。
8.**提交材料**:需要提交调试过的完整源代码、可执行文件以及设计报告的书面和电子版本。
在设计过程中,可以参考《计算机操作系统》、《操作系统实验指导书》、《计算机操作系统教程》以及《现代操作系统》等书籍,这些书籍提供了关于文件系统设计的理论基础和实践经验。
在具体实现时,可以先进行概念设计,明确数据结构,如数据块在内存中的物理结构、文件索引结构、文件系统元素结构、文件系统状态以及用户信息等。
接着,详细设计各个模块,如文件创建、打开、读写等操作的算法流程,并绘制流程图。
进行编码、测试和调试,确保系统能够正确运行并满足所有功能需求。
在设计报告中,应详细阐述这些步骤和决策,以展示整个设计过程的完整性和理解深度。
2025/6/4 20:24:45 425KB 操作系统
1
ISO27145-1中文版是关于全球协调的在线诊断系统(WWH-OBD)通信要求的实施标准规范。
WWH-OBD是与排放相关的车辆在线诊断系统,旨在为制造商和用户提供统一的诊断通信标准。
该标准的中文版是基于个人兴趣翻译而成,仅供参考。
ISO27145-1标准文档的第一部分涉及通用信息和用例定义。


在了解ISO27145-1标准时,首先要明确几个基本概念。
ISO(国际标准化组织)负责制定该标准,其中SAE(美国汽车工程师学会)也参与了相关文档的参考概念和数据附件修订程序的制定。
标准中明确了引用的标准、术语和定义、缩写方式、协议以及文档概况等,为用户提供了理解和应用该标准的框架。


标准的通用信息部分给出了WWH-OBD的概况,包括其用例的概览和定义。
这部分内容不仅帮助了解标准的背景和目的,而且涉及到实施WWH-OBD通信要求所需的关键信息。
用例定义是标准的核心部分之一,明确界定了WWH-OBD系统需要提供的信息类型和功能,便于制造商和第三方诊断工具开发人员确保其产品和服务符合标准要求。


在用例定义中,标准详细说明了三个关键的用例(UC):
1. UC1—与排放相关的OBD系统状态信息:该用例包含了车辆排放相关诊断系统状态信息,比如系统是否准备好、是否出现故障码等。

2. UC2—激活和确认的排放故障信息:这部分描述了车辆如何传递已经激活且确认的排放相关故障信息。
这对于诊断排放故障和制定维修计划至关重要。

3. UC3—以维修为目的的诊断信息:此用例涉及的数据和信息旨在帮助技术人员进行有效维修,包括故障代码、故障历史、待维修事项列表等。


车辆在线诊断(VOBD)是WWH-OBD标准中非常重要的一个概念。
VOBD系统包括了所有与车辆运行状态监测、诊断、存储和检索故障信息相关的功能和组件。
此外,VOBD数据集定义了车辆应该存储哪些类型的数据以及这些数据如何组织,VOBD访问方法则提供了获取这些数据的技术手段。


在阅读ISO27145-1标准时,还需了解文档所规定的标准使用范围。
这部分内容指出标准的适用对象、如何引用标准以及标准的术语和定义。
比如“VOBD”就是车辆在线诊断系统(Vehicle On-Board Diagnostic System)的缩写。
这些术语和定义是理解标准内容的基础。


标准中还可能包含一些参考文献,这些文献是进一步了解或深入研究该领域问题的重要资源。
通常这些文献来源可靠,能够为读者提供更全面的技术背景和信息。


总而言之,ISO27145-1中文版的出现,为国内从事车辆在线诊断系统开发和维修的专业人员提供了一个重要的标准化参考。
通过该标准,可以规范车辆的诊断通信方式,确保不同制造商生产的车辆之间的诊断兼容性,便于维修技术人员进行故障诊断和处理。
同时,该标准的实施有助于提升车辆排放系统的检测和维修效率,对于环保和道路安全都有着积极的意义。
需要注意的是,由于此标准是基于个人兴趣翻译,具体实施时还需以官方发布的准确翻译和解释为准。
2025/5/21 22:57:50
1
设计一个电梯模拟系统。
这是一个离散的模拟程序,由随机事件驱动,以模拟时钟决定乘客或电梯的动作发生的时刻和顺序,系统在某个模拟瞬间处理有待完成的各种事情,然后把模拟时钟推进到某个动作预定要发生的下一时刻。
要求:(1)模拟某校九层教学楼的电梯系统。
该楼有一个自动电梯,能在每层停留,其中第一层是大楼的进出层,即是电梯的“本垒层”,电梯“空闲”时,将来到该层候命。
电梯一共有八个状态,即正在开门(Opening)、已开门(Opened)、正在关门(Closing)、已关门(Closed)、等待(Waiting)、移动(Moving)、加速(Accelerate)、减速(Decelerate)。
(2)乘客可随机地进出于任何层。
对每个人来说,他有一个能容忍的最长等待时间,一旦等候电梯时间过长,他将放弃。
最后一个人放弃能不能取消按键?(3)模拟时钟从0开始,时间单位为0.1秒。
人和电梯的各种动作均要消耗一定的时间单位(简记为t),比如:有人进出时,电梯每隔40t测试一次,若无人进出,则关门;
关门和开门各需要20t;
每个人进出电梯均需要25t;
电梯加速需要15t;
下行时要不要加速?上升时,每一层需要51t,减速需要14t;
每一层和减速?下降时,每一层需要61t,减速需要23t;
如果电梯在某层静止时间超过300t,则驶回1层候命。
驶回本垒层间接到消息?(4)电梯调度规则如下:①就近原则:电梯的主要调度策略是首先响应沿当前行进方向上最近端的请求直到满足最远端请求。
若该方向上无请求时,就改变移动方向;
②在就近原则无法满足的情况下,首先满足更高层的请求;
③电梯的最大承载人数为13人,电梯人数达到13人后,在有人出电梯之前,不接受进入电梯的请求;
④乘客上下电梯时先出后进。
进电梯时乘客是按发出乘坐请求的顺序依次进入,每次只能进入一人且每个人花费的时间都为25t;
⑤电梯在关门期间(电梯离开之前)所在层提出请求的乘客同样允许进入。
(5)按时序显示系统状态的变化过程,即发生的全部人和电梯的动作序列。
扩展要求:实现电梯模拟的可视化界面。
用动画显示电梯的升降,人进出电梯。
设计有下列对象:电梯、人、电梯控制板及其上各种按钮、模拟时钟等。
2025/5/8 10:04:09 17.04MB 数据结构 电梯模拟
1
1、matlab实现原文例子;
2、Walcott-Zak观测器虽然对系统的非线性/不确定性具有鲁棒性,但观测器设计需要满足严格的假设条件,设计参数的选取需要计算大量不等式,当系统维数较高时,往往难以实现。
在Walcott-Zak基础上,提出了一种鲁棒滑模观测器,基于设计新的控制策略,避免了Walcott-Zak观测器所必须满足的严格条件,设计参数的求取不需要求解大量方程,同时能够保证对非线性/不确定性具有鲁棒性。
通过设计滑模,可以调整观测器跟踪系统状态的收敛速度,使状态估计达到预期目标,仿真结果验证了控制策略的有效性。
1
电力系统状态估计经典书籍,比较清晰的版本。
2025/3/31 6:38:39 9.89MB 状态估计
1
在汽车电子领域,CAN(ControllerAreaNetwork)是一种广泛使用的通信协议,尤其在现代车辆的分布式电子系统中。
标题“J2012-DA故障诊断代码定义和故障类型字节定义”涉及到的是与CAN网络相关的故障诊断标准。
J2012是特定于汽车行业的一个标准,它规定了如何解析和理解车载网络中的错误代码,以便于故障排查和维修。
描述中提到的“数字附件电子表格”很可能是一个包含详细信息的表格,列出了各种J2012-DA故障诊断代码及其对应的故障类型字节定义。
这样的表格对于技术人员来说是非常宝贵的资源,因为他们可以快速查找并理解车辆系统中出现的问题。
故障诊断代码(DiagnosticTroubleCodes,DTCs)是车辆电子系统用于报告问题的编码方式。
它们通常由三个或四个字母或数字组成,例如"P0100",其中第一位表示是制造商特有还是通用代码,接下来的两位或三位则标识具体的故障类型。
在J2012-DA标准中,这些代码可能按照特定的结构和规则进行组织,以便于工程师理解和处理。
故障类型字节定义是DTCs的组成部分,它们提供了关于故障性质的更详细信息。
这些字节可能包括故障发生时的数据,如传感器读数、系统状态等,帮助确定故障的具体原因。
通过对这些字节的解读,技术人员可以更深入地了解故障发生的情况,从而采取适当的维修措施。
在文件名称列表中的“J2012DA_201812”,可能指的是这个标准的一个更新版本,发布于2018年12月。
这意味着随着时间的推移,标准可能会进行修订以适应新的技术和需求。
了解J2012-DA故障诊断代码及其故障类型字节定义对汽车行业的技术人员至关重要。
他们需要熟悉这些标准,以便有效地诊断和修复车辆的电气和电子系统问题。
这份压缩包文件提供的详细信息将帮助他们快速定位问题,提高工作效率,减少车辆停机时间,确保行车安全。
通过持续学习和应用这些知识,技术人员可以在日益复杂的汽车技术环境中保持竞争力。
2025/3/23 16:49:38 1.93MB can
1
反演控制方法与实现《反演控制方法与实现》系统地介绍了反演控制方法的基本原理及其在不确定非线性系统中的应用。
《反演控制方法与实现》共分为6章,在介绍反演法的一般理论的基础上,重点论述了抑制参数漂移的自适应反演方法,考虑非线性干扰观测器的弱抖振滑模反演方法,针对系统模型部分未知的情况,使用模糊系统和神经网络估计系统中的未知部分,给出了基于智能系统的反演设计方法,同时本书介绍了系统状态未知情况下的反演设计方法。
针对各种情况本书均给出了详细的理论设计方法和Matlab仿真。
 《反演控制方法与实现》是作者在从事控制理论与控制方法研究的基础上完成的。
本书适用于从事非线性控制方法研究的工作人员和研究生参考。
前言第1章绪论1·1研究的背景及意义1·2李雅普诺夫稳定性理论1·2·1李雅普诺夫意义下的稳定性1·2·2有界性1·2·3李雅普诺夫稳定性理论1·3微分几何理论基础1·3·1李导数和李括号1·3·2微分同胚1·3·3控制系统的相对阶1·3·4输入状态线性化1·3·5状态反馈线性化的设计1·4反演法的基本原理1·5反演法的研究概况1·5·1自适应反演控制1·5·2鲁棒自适应反演控制1·5·3滑模反演控制1·5·4智能反演控制1·5·5其他反演控制方法1·6本书的主要研究内容第2章自适应反演控制方法2·1引言2·2常规自适应反演法2·2·1自适应反演法设计思路2·2·2仿真算例2·3抑制参数漂移的自适应反演控制2·3·1问题描述及预备知识2·3·2抑制参数漂移的自适应反演控制器设计2·3·3系统稳定性分析2·3·4仿真算例2·4扩展的自适应反演控制2·4·1问题描述2·4·2参数自适应律的设计2·4·3基于动态面的扩展反演控制器设计2·4·4稳定性分析2·4·5仿真算例2·5仿真算例的Matlab实现2·5·1节仿真算例的Matlab实现2·5·2节仿真算例的Matlab实现2·5·3节仿真算例的Matlab实现2·6本章小结第3章不确定非线性系统的弱抖振滑模反演控制3·1引言3·2滑模控制基本原理3·3匹配不确定非线性系统的弱抖振滑模反演控制3·3·1问题描述3·3·2滑模反演控制器设计3·3·3滑模反演控制稳定性分析3·3·4自适应滑模反演控制器设计3·3·5自适应滑模反演控制稳定性分析3·3·6非线性干扰观测器3·3·7匹配不确定非线性系统的弱抖振滑模反演控制3·3·8仿真算例3·4非匹配不确定非线性系统的多滑模反演控制3·4·1问题描述3·4·2多滑模反演控制3·4·3基于非线性干扰观测器的多滑模反演控制3·4·4系统稳定性分析3·4·5仿真算例3·5仿真算例的Matlab实现3·5·1节弱抖振滑模反演控制的Matlab实现3·5·2节自适应弱抖振滑模反演控制Matlab实现3·5·3节多滑模反演控制Matlab实现3·6本章小结第4章基于模糊系统的非线性系统反演控制4·1引言4·2基于模糊系统的非线性系统控制4·2·1问题的提出4·2·2模糊系统描述4·2·3控制器设计4·2·4仿真算例4·3节Matlab实现4·4本章小结第5章基于神经网络的非线性系统反演控制5·1引言5·2非线性系统的鲁棒小波神经网络控制5·2·1问题的提出5·2·2小波神经网络结构5·2·3控制器的设计5·2·4稳定性分析5·2·5仿真5·3不确定非线性系统的鲁棒自适应渐近跟踪控制5·3·1控制目标5·3·2控制器设计5·3·3仿真算例5·4算例的Matlab实现5·4·1节算例的Matlab实现5·4·2节算例1的Matlab实现5·4·3节算例2的Matlab实现5·5本章小结第6章基于状态观测器的反演控制器设计6·1滑模观测器控制器设计6·1·1滑模观测器设计6·1·2滑模反演控制器设计6·2仿真算例6·3节仿真实例的Matlab实现6·4本章小结参考文献
2025/1/11 13:03:55 49.9MB 反演控制 backstepping
1
###HP3PAR存储日常管理手册关键知识点解析####一、3PAR存储介绍**1.3PARInSpire架构**-**紧密集群化与多客户端设计**:3PARInSpire架构的设计核心在于解决传统整体式和模块化阵列的价格昂贵与扩展复杂的问题。
该架构允许用户按需购买与扩展,这意味着可以从一个小规模系统开始,随着业务需求的增长逐步添加更多的应用和工作负载,所有这些都在一个单一、自动化的分层存储阵列中实现。
-**内置ThinBuiltIn™的Gen3/Gen4ASIC**:3PARGen3/Gen4ASIC提供了一种高效、基于硬件的零检测机制,与3PAR自身的“精简引擎”协同工作,可以有效移除已分配但未使用的空间,同时不影响性能。
这一特性对于混合工作负载尤其重要,因为它可以显著提高虚拟机的密度,进而减少物理服务器的需求。
-**主动网格控制器技术**:3PAR的主动网格控制器技术是一种独特的设计,与传统的“active-active”控制器架构不同,在后者的架构中,每个LUN或卷只能在一个单控制器上处于活动状态。
而在3PAR的设计中,每个LUN在所有网格控制器上都是活动的,从而提供了更强大的负载均衡能力。
-**细粒度的虚拟化和宽条带化**:3PARInSpire架构通过大规模并行、细粒度的数据条带化来确保为所有类型的工作负载提供高级别的服务。
通过将物理磁盘划分为统一的256MB存储块,并根据RAID类型、驱动器类型、径向位置和条带宽度等参数自动选择和分组这些数据块,从而满足用户定义的性能、成本和高可用性要求。
这样的设计使得工作负载可以自动分配和重新平衡,确保了系统的高可用性和性能的一致性。
-**持续缓存**:持续缓存是一项弹性功能,它能够消除意外组件故障导致的性能损失,这对于维持虚拟数据中心的服务水平至关重要。
该功能能够在组件发生故障时继续提供服务,而不会出现性能下降。
####二、日常配置**1.添加主机Host**-添加主机是指将需要访问存储资源的服务器或计算节点加入到存储系统中。
通常涉及配置主机的IP地址、认证方式等信息,以确保主机能够安全地访问存储资源。
**2.创建CPG(CommonProvisioningGroup)**-CPG是一种存储池,它汇集了多个物理磁盘,并提供了统一的存储资源池。
创建CPG可以根据特定的性能和冗余需求定制存储策略。
**3.创建VV虚拟磁盘**-VV(VirtualVolume)是3PAR存储系统中的基本存储单元,类似于传统磁盘。
通过创建VV,用户可以根据实际需求定义存储容量、性能和冗余级别。
**4.分配VV虚拟磁盘**-分配VV指的是将创建好的虚拟磁盘分配给特定的主机或应用使用。
这一过程可能包括设置访问权限、加密选项等细节。
####三、日常维护**1.存储开机步骤**-开机步骤可能包括启动电源供应、初始化存储控制器、加载操作系统等。
确保按照正确的顺序执行这些步骤非常重要,以避免数据丢失或损坏。
**2.存储关机步骤**-关机步骤同样重要,通常包括卸载文件系统、停止存储服务、关闭电源等。
正确执行关机步骤有助于保护数据的安全性。
**3.存储日志Insplore收集**-Insplore是一种用于收集3PAR存储系统日志的方法。
收集这些日志对于监控系统健康状况、诊断问题和规划未来扩展非常重要。
**4.管理机SP日志SPLOR收集**-SPLOR是用于收集存储管理机(SP)日志的一种方法。
这些日志提供了关于存储系统管理层面的重要信息,有助于优化存储系统的管理效率。
**5.特定信息CLI命令行收集**-CLI(CommandLineInterface)命令行工具允许管理员通过命令行输入特定的指令来收集有关存储系统的信息。
这对于需要深入了解系统状态的情况非常有用。
####四、HP支持服务模式**1.主动式响应--SPCall-Home**-SPCall-Home是一种主动式支持服务,当存储系统检测到潜在问题时会自动通知HP支持中心。
这种方式有助于及时发现并解决问题,减少停机时间。
**2.被动式响应—HP服务热线**-当用户遇到问题时,可以通过HP服务热线寻求帮助。
这是一种被动式的响应方式,依赖于用户的主动联系。
**3.被动式响应—邮寄存储日志**-如果无法通过远程方式解决某些问题,用户可能需要将存储日志发送给HP支持团队进行进一步分析。
这种方式适用于那些需要深入诊断的情况。
以上内容详细阐述了HP3PAR存储系统的几个关键方面,包括其架构特点、日常配置和维护的操作流程,以及HP提供的支持服务模式。
通过对这些知识点的理解,可以帮助IT专业人员更好地管理和利用3PAR存储系统,确保其高效稳定地运行。
2024/12/29 5:38:03 2.19MB 3PAR存储
1
电力系统状态估计——于尔铿.学习状态估计的经典著作,是目前为止中文类电力系统状态估计著作的代表之作。
2024/12/13 3:46:52 5.06MB 电力系统 状态估计 于尔铿
1
共 25 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡