**XilinxISE工具简介**XilinxISE(IntegratedSoftwareEnvironment)是Xilinx公司开发的一款综合设计环境,用于实现FPGA(Field-ProgrammableGateArray)和CPLD(ComplexProgrammableLogicDevice)的设计、仿真、综合、布局布线等全流程工作。
这个工具集为数字逻辑设计者提供了强大的功能,使得在硬件描述语言(如VHDL或Verilog)中设计复杂的数字系统变得更为便捷。
**版本范围:ISE11.x至ISE12.1**本资源涵盖了ISE工具的11.x到12.1版本的通用许可证,这表明它支持多个不同版本的软件。
每个版本都有其独特的特性和改进,例如:-ISE11.x:引入了更高效的功耗管理工具,支持更广泛的Xilinx器件,并优化了设计流程。
-ISE12.1:进一步提升了综合速度,增强了对SystemVue设计导入的支持,同时改善了设计的可移植性和优化。
**全功能与部分IP**"全功能"意味着这个许可证允许用户使用ISE工具的所有核心功能,包括设计输入、逻辑综合、时序分析、物理实现等。
同时,"包括部分IP"表示此许可证还涵盖了一些Xilinx提供的知识产权(IP)核,这些核是预先设计好的功能模块,可以加速特定功能的实现,如串行通信接口、内存控制器等。
然而,需要注意的是,不是所有XilinxIP都包含在内,可能需要额外购买某些高级或专用的IP核。
**Xilinx全球代理——安富利**安富利(Avnet)是全球知名的电子元件和解决方案分销商,也是Xilinx的官方代理之一。
通过安富利获得的这个许可证,用户可以确信其合法性与可靠性,同时也可能享受到了良好的技术支持和服务。
**许可证文件:license_ISE_11_to_12_AVNET.lic**这个压缩包中的"license_ISE_11_to_12_AVNET.lic"文件是激活ISE工具的关键。
许可证文件通常包含了序列号、授权使用的硬件信息以及软件功能的解锁码。
在安装并启动ISE后,需要正确配置这个许可证文件,才能使软件在指定的版本范围内正常工作并启用所有授权的功能和IP。
**使用注意事项**1.**兼容性**:确保您的电脑硬件和操作系统与ISE版本兼容,因为不同版本的ISE可能有特定的系统需求。
2.**安装过程**:在安装ISE时,需要按照官方指南正确安装,并在指定位置放置许可证文件。
3.**许可证激活**:安装完成后,需在软件中加载许可证文件,进行激活。
4.**更新与维护**:尽管这是一个全功能的许可证,但应及时关注Xilinx的更新,以获取最新的工具补丁和IP更新。
5.**法律条款**:使用该许可证应遵循Xilinx的许可协议,未经授权的分发或商业使用可能会引起法律问题。
这个资源对于那些需要在多个ISE版本间切换的开发者来说非常有用,无论是学习还是项目开发,都可以享受到XilinxISE的完整功能。
同时,通过正规渠道获得的许可证也确保了设计的安全性和合法性。
2025/12/26 15:33:43 1KB ISE11.x ISE12.1 Xilinx
1
VGA控制器的设计与实现,本设计使用FPGA芯片EP2C35F672C6,在QuartusI工作平台下,利用verilog硬件描述语言实现。
文件包含完整代码、仿真图、及课程详细报告。
2025/12/14 11:10:39 60.29MB VGA FPGA QUARTUSII
1
废话不说了,下面进入正题,学习FPGA经历了这么几个阶段:①、Verilog语言的学习,熟悉Verilog语言的各种语法。
②、FPGA的学习,熟悉QuartusII软件的各种功能,各种逻辑算法设计,接口模块(RS232,LCD,VGA,SPI,I2c等)的设计,时序分析,硬件优化等,自己开始设计简单的FPGA板子。
③、NiosII的学习,熟悉NiosII的开发流程,熟悉开发软件(SOPC,NiosIIIDE),了解NiosII的基本结构,设计NiosII开发板,编写NiosIIC语言程序,调试板子各模块功能。
先来说说第一个阶段,现在主要的硬件描述语言有VHDL,Verilog两种,在本科时老师一般教VHDL,不过现在Verilog用的人越来越多,其更容易上手(与C语言语法比较类似),也更灵活,现在的IC设计基本都用Verilog。
像systemC,systemVerilog之类的应该还在萌芽阶段,以后可能会有较大发展。
鉴于以上原因我选择了Verilog作为我学习的硬件描述语言。
其实有C语言的基础,学起Verilog的语言很简单,关键要有并行的概念,所有的module,assign,always都是并行的,这一点与软件语言有明显不同。
这里推荐几本评价比较好的学习Verilog的书籍:①、《verilog数字系统设计教程》,这本书对于入门是一本很好的书,通俗易懂,让人很快上手,它里面的例子也不错。
但本书对于资源优化方面的编程没有多少涉及到。
②、《设计与验证VerilogHDL》,这本书虽然比较薄,但是相当精辟,讲解的也很深入,很多概念看了这本书有种豁然开朗的感觉,呵呵。
学习Verilog其实不用看很多书,基本的语法部分大家都一样,关键是要自己会灵活应用,多做练习。
Verilog语言学了一段时间,感觉自己可以编点东西,希望自己编的程序在板子上运行看看结果,下面就介绍我学习的第二个阶段。
刚开始我拿了实验室一块CPLD的开发板做练习,熟悉QuartusII的各种功能,比如IP的调用,各种约束设置,时序分析,Logiclock设计方法等,不过做到后面发现CPLD的资源不太够(没有内嵌的RAM、不能用SignalTapII,LE太少等),而实验室没有FPGA开发板,所以就萌生了自己做FPGA开发板的意图,刚好Cadence我也学的差不多了,就花了几天时间主要研究了FPGA配置电路的设计,在板子上做了Jtag和AS下载口,在做了几个用户按键和LED,其他的口全部引出作为IO口,电路比较简单,板子焊好后一调就通了(心里那个爽啊...)。
我选的FPGA是cycloneII系列的EP2C5,资源比以前的FPGA多了好几倍,还有PLL,内嵌的RAM,可以试试SignalTapII,用内嵌的逻辑分析仪测试引脚波形,对于FPGA的调试,逻辑分析仪是至关重要的。
利用这块板子我完成了项目中的几个主要功能:RS232通信,指令译码,配置DDS,AD数据高速缓存,电子开关状态设置等,在实践中学习起来真的比平时快很多,用到什么学什么动力更大。
这个时候我主要看的数据有这几本感觉比较好:①、《AlteraFPGA/CPLD设计(基础篇)》:讲解一些基本的FPGA设计技术,以及QuartusII中各个工具的用法(IP,RTL,SignalProbe,SignalTapII,TimingClosureFloorplan,chipEditor等),对于入门非常好。
②、《AlteraFPGA/CPLD设计(高级篇)》:讲解了一些高级工具的应用,LogicLock,时序约束很分析,设计优化,也讲述了一些硬件编程的思想,作为提高用。
③、《FPGA设计指南--器件,工具和流程》:这本书看了他的目录忍不住就买了,这本书讲述了FPGA设计的各个方面,虽然每个方面都是点到为止,但能让你有个整体的概念,了解FPGA的所有设计功能,了解FPGA开发的整个流程。
2025/11/11 0:01:05 131.03MB FPGA 学习 文档 合集
1
基于硬件描述语言(VerilogHDL)和FPGA的2FSK调制器的设计与仿真,包含实验报告文档
2025/8/29 11:19:30 4.41MB FPGA 2FSK调制器
1
《VHDL实用教程》(潘松王国栋编著).zip(4.6MB)ASICVHDLBasic.pdf(6.38MB)vhdl40个程序.zip(47.01KB)VHDL_design_techniques_for_flex_devices.ppt(497KB)vhdl100个例子.zip(342.4KB)vhdl-beginner.ppt(717.5KB)vhdlcoder.zip(47.41KB)VHDL经典教程.pdf(371.78KB)VHDL数字控制系统设计范例(经典).rar(6.29MB)VHDL数字控制系统设计范例(经典).zip(6.3MB)VHDL学习(哈工大ppt).pdf(620.74KB)VHDL硬件描述语言.ppt(226KB)VHDL-硬件描述语言.ppt(829KB)VHDL硬件描述语言基础.ppt(185.5KB)VHDL硬件描述语言与数字逻辑电路设计(西电版).rar(6.01MB)VHDL与数字电路设计.pdf(6.87MB)VHDL语法入门.ppt(133.5KB)VHDL语言介绍与设计实例.doc(197KB)数字电路EDA入门-VHDL程序实例集.PDF(3.08MB)台湾国家晶元设计中心VHDL内部培训资料(CIC).zip(2.86MB)ExamplesofVHDLDescriptions.pdf(278KB)TheVHDLGoldenReferenceGuide.pdf(255.8KB)VHDLProgrammingbyExample.4th.Ed.pdf(2.3MB)VHDLReferenceManual.pdf(1.06MB)VHDL编程基础.ppt(2.26MB)VHDL培训教程.PPT(670KB)VHDL与数字电路设计.ppt(3.22MB)VHDL语言详解.pdf(1.2MB)
2025/8/10 4:11:34 47.18MB VHDL培训教材
1
边缘检测是数字图像处理中的一个基础且重要的概念,它用于识别图像中的边界,这些边界通常对应于物体的轮廓。
在硬件实现中,如使用VERILOG这种硬件描述语言(HDL),可以创建高效的边缘检测电路,这对于嵌入式系统、计算机视觉应用以及实时图像处理非常有用。
VERILOG是一种广泛使用的HDL,它允许工程师用类似于编程的语言来描述数字系统的逻辑功能。
通过VERILOG编写的代码可以在FPGA(现场可编程门阵列)或ASIC(应用专用集成电路)上实现,以硬件的形式执行特定的算法,如边缘检测。
边缘检测通常涉及一系计算图像像素的差分或梯度。
其中,最经典的算法之一是Sobel算子,它利用水平和垂直方向的一组滤波器对图像进行卷积,以找出强度变化的区域。
在VERILOG中实现Sobel算子,我们需要定义滤波器系数,并编写逻辑来计算像素邻域内的差分。
以下是可能的VERILOG代码结构:1.**模块定义**:定义一个名为“edge_detector”的模块,输入为原始图像的像素数据,输出为边缘检测后的结果。
可能还需要控制信号,如时钟和使能信号。
```verilogmoduleedge_detector(input[PIXEL_WIDTH-1:0]img_in,//输入图像像素outputreg[PIXEL_WIDTH-1:0]edge_out,//输出边缘像素inputclk,//时钟inputrst//重置信号);```2.**内部变量**:声明用于存储滤波器权重和中间结果的变量。
```verilogreg[PIXEL_WIDTH-1:0]horz_weight,vert_weight;//滤波器权重reg[PIXEL_WIDTH-1:0]horz_diff,vert_diff;//水平和垂直差分```3.**滤波器定义**:定义Sobel算子的水平和垂直滤波器权重。
```verilogparameterSOBEL_X={};//水平滤波器权重parameterSOBEL_Y={};//垂直滤波器权重```4.**计算差分**:在时钟的上升沿,对图像进行卷积并计算差分。
```verilogalways@(posedgeclk)beginif(!rst)beginedge_outTHRESHOLD)edge_out<='1;//达到阈值则认为是边缘,否则设为0end```6.**结束模块定义**:关闭模块。
```verilogendmodule```这个模块可以被综合到FPGA硬件中,实现高速、低延迟的边缘检测。
在实际应用中,可能还需要考虑图像的滚动缓冲、多级缓存和并行处理以提高效率。
VERILOG实现的边缘检测不仅涉及到图像处理的基本概念,还涵盖了数字逻辑设计、并行处理和实时系统设计等多个领域。
理解和实现这样的系统有助于提升硬件设计者在数字信号处理和嵌入式系统设计方面的技能。
2025/8/4 9:34:58 2.93MB verilog
1
USBBlaster是一款由Altera公司开发的用于JTAG(JointTestActionGroup)编程和调试FPGA(Field-ProgrammableGateArray)芯片的设备。
它通过USB接口与计算机连接,为用户提供了方便快捷的FPGA编程方案。
USBBlaster的工作原理是利用USB通信协议将数据传输到一个内置的CPLD(ComplexProgrammableLogicDevice),然后CPLD通过JTAG接口与FPGA进行交互。
在"USBBlaster制作资料"中,我们可能会接触到以下几个关键知识点:1.**USB通信协议**:USB(UniversalSerialBus)是一种标准的接口,用于连接各种外部设备到计算机。
USBBlaster利用USB协议传输数据,它遵循USB规范中的设备类定义,例如CDC(CommunicationDeviceClass)或HID(HumanInterfaceDevice)类,以实现数据的高速、稳定传输。
2.**JTAG协议**:JTAG是一种国际标准测试协议,用于电路板级的硬件测试和调试。
在FPGA应用中,JTAG被用来编程、测试和诊断FPGA内部逻辑。
JTAG接口通常包括TMS(TestModeSelect)、TDI(TestDataIn)、TDO(TestDataOut)和TCK(TestClock)信号线,这些信号线在USBBlaster中由CPLD管理。
3.**CPLD**:CPLD是一种可编程逻辑器件,可以配置为实现用户自定义的逻辑功能。
在USBBlaster中,CPLD扮演了关键角色,它接收来自USB接口的数据,处理后通过JTAG接口发送到FPGA,同时也接收FPGA的反馈信息,从而实现FPGA的编程和调试。
4.**原理图**:提供的原理图会详细展示USBBlaster的硬件设计,包括USB接口电路、CPLD配置、JTAG接口以及电源管理等部分。
通过分析原理图,我们可以理解各个组件如何协同工作,以及如何根据需要进行硬件修改或定制。
5.**固件程序**:固件是运行在硬件设备上的软件,对于USBBlaster,这可能包括USB控制器的驱动程序和CPLD的配置文件。
固件程序确保USB接口正确地与主机通信,并控制CPLD执行JTAG操作。
6.**烧写软件**:为了将固件程序和CPLD配置加载到硬件上,我们需要特定的烧写工具。
这类软件通常支持图形界面,方便用户选择要加载的文件,监测编程过程,并提供错误检查和诊断功能。
7.**CPLD程序**:CPLD程序是指配置CPLD的逻辑代码,它定义了CPLD如何处理USB数据并控制JTAG接口。
这种代码通常使用硬件描述语言(如VHDL或Verilog)编写,并通过专用的编译工具转换成配置文件。
通过这个压缩包,学习者不仅可以了解USBBlaster的工作原理,还可以动手制作自己的USBBlaster,这对于FPGA开发者来说是一项宝贵的实践经验。
同时,这也涉及到电子工程、计算机硬件和嵌入式系统等多个领域的知识,有助于提升综合技能。
2025/7/23 6:41:06 2.14MB USB Blaster
1
BSDL(boundaryscandescriptionlanguage)语言硬件描述语言(VHDL)的一个子集,是对边界扫描器件的边界扫描特性的描述,
2025/7/9 4:41:56 2.37MB BSDL
1
FPGA逻辑设计,硬件描述语言仿真,modelsim软件入门教程。
2025/7/1 22:35:58 4.59MB modelsim 仿真 入门教程
1

【电子科技大学计算机组成原理实验代码 Mips_CPU代码】在计算机科学领域,计算机组成原理是理解计算机硬件基础的重要课程。
这个实验代码集是针对MIPS(Microprocessor without Interlocked Pipeline Stages)架构的一个CPU实现,使用了硬件描述语言Verilog进行编写。
MIPS是一种精简指令集计算机(RISC)架构,广泛应用于教学、研究以及一些嵌入式系统。
1. **MIPS架构**:MIPS架构以其简单的指令集和流水线设计著称,包括取指、解码、执行、访存和写回五个阶段。
它具有高吞吐量和低延迟的特点,适合高性能计算和嵌入式应用。
2. **Verilog**:Verilog是一种硬件描述语言,用于设计和验证数字系统的逻辑功能。
在这个实验中,Verilog被用来描述MIPS CPU的各个部件,如寄存器、ALU(算术逻辑单元)、控制单元等,并实现指令集架构。
3. **CPU组成**:Mips_cpu文件夹可能包含了CPU的主模块,包括: - **寄存器文件**:存储数据和指令的临时位置。
- **ALU**:执行算术和逻辑运算。
- **控制单元**:根据指令解码结果生成控制信号,指导整个CPU的操作。
- **内存接口**:与外部存储器交互,读取或写入数据。
- **指令解码器**:解析指令并生成相应的操作。
4. **Cpu_and_io**:这部分可能包含了CPU与输入/输出设备的交互逻辑,比如中断处理、设备驱动等。
在实际系统中,CPU不仅要处理内部指令流,还需要响应外部事件,如用户输入、定时器中断等。
5. **Module**:这个文件夹可能包含CPU设计中的各个独立模块,每个模块都有特定的功能,如加法器、比较器、寄存器堆等。
这些模块可以复用,提高代码的可读性和可维护性。
6. **实验过程**:实验描述中提到“保证编译直接可用”,意味着代码已经经过了编译和仿真验证。
这通常涉及到使用像ModelSim这样的仿真工具,确保代码在逻辑上是正确的。
同时,“仿真跟下载FPGA开发板都做了”意味着代码不仅能在软件层面模拟运行,还能在硬件平台上实现,如Xilinx或Altera的FPGA开发板,验证其实物性能。
7. **附加题**:实验可能还包括了一些额外的挑战,如扩展指令集、优化性能等。
这有助于深入理解计算机组成原理,并提升设计能力。
这个实验项目提供了实践MIPS CPU设计的宝贵机会,通过动手编程和硬件验证,学习者可以更深入地理解计算机硬件的工作原理,为后续的系统级设计和硬件开发打下坚实的基础。
2025/6/19 13:19:12 2.77MB
1
共 76 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡