STM32AD7606控制方法代码主要涉及了嵌入式系统中微控制器STM32与高精度模数转换器AD7606的交互技术。
STM32是基于ARMCortex-M内核的微控制器,广泛应用于各种嵌入式硬件设计中,而AD7606是一款16位、8通道同步采样模拟到数字转换器,常用于工业自动化、医疗设备和测试测量系统等需要高精度信号采集的场合。
在STM32与AD7606的通信中,一般采用SPI(SerialPeripheralInterface)或I2C接口。
SPI是一种高速、全双工、同步串行通信协议,适合短距离高速数据传输;
I2C则是一种多主机、双向两线制的总线协议,适合连接低速外设,但数据速率较低。
由于AD7606支持这两种通信模式,开发人员可以根据实际需求选择合适的接口。
1.**SPI配置**:需要在STM32的HAL库或LL库中初始化SPI接口,包括设置时钟源、时钟频率、数据帧格式、极性和相位等参数。
例如,可以配置SPI工作在主模式,数据从MISO引脚接收,MOSI引脚发送,通过NSS引脚实现片选。
2.**AD7606配置**:在初始化过程中,需要设置AD7606的工作模式,如单端或差分输入、增益、采样率等。
这些配置通常通过SPI或I2C发送特定的命令字节来完成。
3.**读写操作**:STM32通过SPI或I2C向AD7606发送读/写命令。
写操作可能涉及设置转换器的寄存器,比如配置采样率、启动转换等。
读操作则会获取转换后的数字结果。
在SPI中,通常需要在读写操作之间插入一个空时钟周期(dummybit)来正确同步数据的传输。
4.**中断处理**:在连续转换模式下,AD7606可能会生成中断请求,通知STM32新的转换结果已准备好。
STM32需要设置中断服务函数,处理中断请求并读取转换结果。
5.**数据处理**:读取的转换结果通常为二进制码,需要进行相应的转换,如左对齐或右对齐,然后根据AD7606的参考电压计算实际的模拟电压值。
6.**电源管理**:AD7606可能有低功耗模式,可以通过控制命令进入或退出。
在不需要转换时,关闭ADC以节省能源。
7.**错误检测**:程序中应包含错误检测机制,例如检查CRC校验或超时,以确保数据的完整性和系统的稳定性。
8.**代码实现**:在实际的代码实现中,可以使用HAL或LL库提供的函数进行硬件抽象,简化编程。
例如,`HAL_SPI_TransmitReceive()`函数可用于发送和接收SPI数据,`HAL_Delay()`用于控制延时,以及`HAL_ADC_Start()`和`HAL_ADC_PollForConversion()`用于启动转换和等待转换完成。
在项目中,开发者通常会创建一个AD7606的驱动库,封装上述操作,以方便其他模块调用。
这个驱动库可能包括初始化函数、配置函数、读取转换结果的函数等,使得系统设计更加模块化和易于维护。
通过理解这些知识点,并结合提供的AD7606压缩包中的代码,你可以实现STM32对AD7606的精确控制,从而进行高精度的模拟信号采集和处理。
2025/3/19 17:28:35 78KB stm32 arm 嵌入式硬件
1
图的应用,实现了求任意两城市间的最短距离以及全部路径,基于MFC实现。
2025/3/12 4:44:46 3.83MB C++;MFC
1
内含最短路径算法代码及实验报告。
本次实验要求利用MATLAB分别实现Dijkstra算法和Floyd算法,可对输入的邻接距离矩阵计算图中任意两点间的最短距离矩阵和路由矩阵,且能查询任意两点间的最短距离和路由。
2025/2/27 9:36:57 272KB 最短路径算法 Dijkstra算法 matlab
1
MATLAB语言常用算法程序集书中4-17章代码,都是一些常用的程序第4章:插值函数名功能Language求已知数据点的拉格朗日插值多项式Atken求已知数据点的艾特肯插值多项式Newton求已知数据点的均差形式的牛顿插值多项式Newtonforward求已知数据点的前向牛顿差分插值多项式Newtonback求已知数据点的后向牛顿差分插值多项式Gauss求已知数据点的高斯插值多项式Hermite求已知数据点的埃尔米特插值多项式SubHermite求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值SecSample求已知数据点的二次样条插值多项式及其插值点处的值ThrSample1求已知数据点的第一类三次样条插值多项式及其插值点处的值ThrSample2求已知数据点的第二类三次样条插值多项式及其插值点处的值ThrSample3求已知数据点的第三类三次样条插值多项式及其插值点处的值BSample求已知数据点的第一类B样条的插值DCS用倒差商算法求已知数据点的有理分式形式的插值分式Neville用Neville算法求已知数据点的有理分式形式的插值分式FCZ用倒差商算法求已知数据点的有理分式形式的插值分式DL用双线性插值求已知点的插值DTL用二元三点拉格朗日插值求已知点的插值DH用分片双三次埃尔米特插值求插值点的z坐标第5章:函数逼近Chebyshev用切比雪夫多项式逼近已知函数Legendre用勒让德多项式逼近已知函数Pade用帕德形式的有理分式逼近已知函数lmz用列梅兹算法确定函数的最佳一致逼近多项式ZJPF求已知函数的最佳平方逼近多项式FZZ用傅立叶级数逼近已知的连续周期函数DFF离散周期数据点的傅立叶逼近SmartBJ用自适应分段线性法逼近已知函数SmartBJ用自适应样条逼近(第一类)已知函数multifit离散试验数据点的多项式曲线拟合LZXEC离散试验数据点的线性最小二乘拟合ZJZXEC离散试验数据点的正交多项式最小二乘拟合第6章:矩阵特征值计算Chapoly通过求矩阵特征多项式的根来求其特征值pmethod幂法求矩阵的主特征值及主特征向量rpmethod瑞利商加速幂法求对称矩阵的主特征值及主特征向量spmethod收缩法求矩阵全部特征值ipmethod收缩法求矩阵全部特征值dimethod位移逆幂法求矩阵离某个常数最近的特征值及其对应的特征向量qrtzQR基本算法求矩阵全部特征值hessqrtz海森伯格QR算法求矩阵全部特征值rqrtz瑞利商位移QR算法求矩阵全部特征值第7章:数值微分MidPoint中点公式求取导数ThreePoint三点法求函数的导数FivePoint五点法求函数的导数DiffBSample三次样条法求函数的导数SmartDF自适应法求函数的导数CISimpson辛普森数值微分法法求函数的导数Richason理查森外推算法求函数的导数ThreePoint2三点法求函数的二阶导数FourPoint2四点法求函数的二阶导数FivePoint2五点法求函数的二阶导数Diff2BSample三次样条法求函数的二阶导数第8章:数值积分CombineTraprl复合梯形公式求积分IntSimpson用辛普森系列公式求积分NewtonCotes用牛顿-科茨系列公式求积分IntGauss用高斯公式求积分IntGaussLada用高斯拉道公式求积分IntGaussLobato用高斯—洛巴托公式求积分IntSample用三次样条插值求积分IntPWC用抛物插值求积分IntGaussLager用高斯-拉盖尔公式求积分IntGaussHermite用高斯-埃尔米特公式求积分IntQBXF1求第一类切比雪夫积分IntQBXF2求第二类切比雪夫积分DblTraprl用梯形公式求重积分DblSimpson用辛普森公式求重积分IntDBGauss用高斯公式求重积分第9章:方程求根BenvliMAX贝努利法求按模最大实根BenvliMIN贝努利法求按模最小实根HalfInterval用二分法求方程的一个根hj用黄金分割法求方程的一个根StablePoint用不动点迭代法求方程的一个根AtkenStablePoint用艾肯特加速的不动点迭代法求方程的一个根StevenStablePoint用史蒂芬森加速的不动点迭代法求方程的一个根Secant用一般弦截法求方程的一个根SinleSecant用单点弦截法求方程的一个根DblSecant用双点弦截法求方程的一个根PallSecant用平行弦截法求方程的一个根ModifSecant用改进弦截法求方程的一个根StevenSecant用史蒂芬森法求方程的一个根PYZ用劈因子法求方程的一个二次因子Parabola用抛物线法求方程的一个根QBS用钱伯斯法求方程的一个根NewtonRoot用牛顿法求方程的一个根SimpleNewton用简化牛顿法求方程的一个根NewtonDown用牛顿下山法求方程的一个根YSNewton逐次压缩牛顿法求多项式的全部实根Union1用联合法1求方程的一个根TwoStep用两步迭代法求方程的一个根Montecarlo用蒙特卡洛法求方程的一个根MultiRoot求存在重根的方程的一个重根第10章:非线性方程组求解mulStablePoint用不动点迭代法求非线性方程组的一个根mulNewton用牛顿法法求非线性方程组的一个根mulDiscNewton用离散牛顿法法求非线性方程组的一个根mulMix用牛顿-雅可比迭代法求非线性方程组的一个根mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根mulDNewton用牛顿下山法求非线性方程组的一个根mulGXF1用两点割线法的第一种形式求非线性方程组的一个根mulGXF2用两点割线法的第二种形式求非线性方程组的一个根mulVNewton用拟牛顿法求非线性方程组的一组解mulRank1用对称秩1算法求非线性方程组的一个根mulDFP用D-F-P算法求非线性方程组的一组解mulBFS用B-F-S算法求非线性方程组的一个根mulNumYT用数值延拓法求非线性方程组的一组解DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解mulFastDown用最速下降法求非线性方程组的一组解mulGSND用高斯牛顿法求非线性方程组的一组解mulConj用共轭梯度法求非线性方程组的一组解mulDamp用阻尼最小二乘法求非线性方程组的一组解第11章:解线性方程组的直接法SolveUpTriangle求上三角系数矩阵的线性方程组Ax=b的解GaussXQByOrder高斯顺序消去法求线性方程组Ax=b的解GaussXQLineMain高斯按列主元消去法求线性方程组Ax=b的解GaussXQAllMain高斯全主元消去法求线性方程组Ax=b的解GaussJordanXQ高斯-若当消去法求线性方程组Ax=b的解Crout克劳特分解法求线性方程组Ax=b的解Doolittle多利特勒分解法求线性方程组Ax=b的解SymPos1LL分解法求线性方程组Ax=b的解SymPos2LDL分解法求线性方程组Ax=b的解SymPos3改进的LDL分解法求线性方程组Ax=b的解followup追赶法求线性方程组Ax=b的解InvAddSide加边求逆法求线性方程组Ax=b的解Yesf叶尔索夫求逆法求线性方程组Ax=b的解qrxqQR分解法求线性方程组Ax=b的解第12章:解线性方程组的迭代法rs里查森迭代法求线性方程组Ax=b的解crs里查森参数迭代法求线性方程组Ax=b的解grs里查森迭代法求线性方程组Ax=b的解jacobi雅可比迭代法求线性方程组Ax=b的解gauseidel高斯-赛德尔迭代法求线性方程组Ax=b的解SOR超松弛迭代法求线性方程组Ax=b的解SSOR对称逐次超松弛迭代法求线性方程组Ax=b的解JOR雅可比超松弛迭代法求线性方程组Ax=b的解twostep两步迭代法求线性方程组Ax=b的解fastdown最速下降法求线性方程组Ax=b的解conjgrad共轭梯度法求线性方程组Ax=b的解preconjgrad预处理共轭梯度法求线性方程组Ax=b的解BJ块雅克比迭代法求线性方程组Ax=b的解BGS块高斯-赛德尔迭代法求线性方程组Ax=b的解BSOR块逐次超松弛迭代法求线性方程组Ax=b的解第13章:随机数生成PFQZ用平方取中法产生随机数列MixMOD用混合同余法产生随机数列MulMOD1用乘同余法1产生随机数列MulMOD2用乘同余法2产生随机数列PrimeMOD用素数模同余法产生随机数列PowerDist产生指数分布的随机数列LaplaceDist产生拉普拉斯分布的随机数列RelayDist产生瑞利分布的随机数列CauthyDist产生柯西分布的随机数列AELDist产生爱尔朗分布的随机数列GaussDist产生正态分布的随机数列WBDist产生韦伯西分布的随机数列PoisonDist产生泊松分布的随机数列BenuliDist产生贝努里分布的随机数列BGDist产生贝努里-高斯分布的随机数列TwoDist产生二项式分布的随机数列第14章:特殊函数计算gamafun用逼近法计算伽玛函数的值lngama用Lanczos算法计算伽玛函数的自然对数值Beta用伽玛函数计算贝塔函数的值gamap用逼近法计算不完全伽玛函数的值betap用逼近法计算不完全贝塔函数的值bessel用逼近法计算伽玛函数的值bessel2用逼近法计算第二类整数阶贝塞尔函数值besselm用逼近法计算变型的第一类整数阶贝塞尔函数值besselm2用逼近法计算变型的第二类整数阶贝塞尔函数值ErrFunc用高斯积分计算误差函数值SIx用高斯积分计算正弦积分值CIx用高斯积分计算余弦积分值EIx用高斯积分计算指数积分值EIx2用逼近法计算指数积分值Ellipint1用高斯积分计算第一类椭圆积分值Ellipint2用高斯积分计算第二类椭圆积分值第15章:常微分方程的初值问题DEEuler用欧拉法求一阶常微分方程的数值解DEimpEuler用隐式欧拉法求一阶常微分方程的数值解DEModifEuler用改进欧拉法求一阶常微分方程的数值解DELGKT2_mid用中点法求一阶常微分方程的数值解DELGKT2_suen用休恩法求一阶常微分方程的数值解DELGKT3_suen用休恩三阶法求一阶常微分方程的数值解DELGKT3_kuta用库塔三阶法求一阶常微分方程的数值解DELGKT4_lungkuta用经典龙格-库塔法求一阶常微分方程的数值解DELGKT4_jer用基尔法求一阶常微分方程的数值解DELGKT4_qt用变形龙格-库塔法求一阶常微分方程的数值解DELSBRK用罗赛布诺克半隐式法求一阶常微分方程的数值解DEMS用默森单步法求一阶常微分方程的数值解DEMiren用米尔恩法求一阶常微分方程的数值解DEYDS用亚当斯法求一阶常微分方程的数值解DEYCJZ_mid用中点-梯形预测校正法求一阶常微分方程的数值解DEYCJZ_adms用阿达姆斯预测校正法求一阶常微分方程的数值解DEYCJZ_adms2用密伦预测校正法求一阶常微分方程的数值解DEYCJZ_yds用亚当斯预测校正法求一阶常微分方程的数值解DEYCJZ_myds用修正的亚当斯预测校正法求一阶常微分方程的数值解DEYCJZ_hm用汉明预测校正法求一阶常微分方程的数值解DEWT用外推法求一阶常微分方程的数值解DEWT_glg用格拉格外推法求一阶常微分方程的数值解第16章:偏微分方程的数值解法peEllip5用五点差分格式解拉普拉斯方程peEllip5m用工字型差分格式解拉普拉斯方程peHypbYF用迎风格式解对流方程peHypbLax用拉克斯-弗里德里希斯格式解对流方程peHypbLaxW用拉克斯-温德洛夫格式解对流方程peHypbBW用比姆-沃明格式解对流方程peHypbRich用Richtmyer多步格式解对流方程peHypbMLW用拉克斯-温德洛夫多步格式解对流方程peHypbMC用MacCormack多步格式解对流方程peHypb2LF用拉克斯-弗里德里希斯格式解二维对流方程的初值问题peHypb2FL用拉克斯-弗里德里希斯格式解二维对流方程的初值问题peParabExp用显式格式解扩散方程的初值问题peParabTD用跳点格式解扩散方程的初值问题peParabImp用隐式格式解扩散方程的初边值问题peParabKN用克拉克-尼科尔森格式解扩散方程的初边值问题peParabWegImp用加权隐式格式解扩散方程的初边值问题peDKExp用指数型格式解对流扩散方程的初值问题peDKSam用萨马尔斯基格式解对流扩散方程的初值问题第17章:数据统计和分析MultiLineReg用线性回归法估计一个因变量与多个自变量之间的线性关系PolyReg用多项式回归法估计一个因变量与一个自变量之间的多项式关系CompPoly2Reg用二次完全式回归法估计一个因变量与两个自变量之间的关系CollectAnaly用最短距离算法的系统聚类对样本进行聚类DistgshAnalysis用Fisher两类判别法对样本进行分类MainAnalysis对样本进行主成分分析
2025/1/7 19:17:40 113KB matlab 算法 常用程序
1
一、课题名称:景区旅游信息管理系统二、课题来源:课程组自拟三、课题类型:综合型四、目的意义:1. 设计一个景区旅游信息管理系统,提高对图的创建、输出、最短路径算法和最小生成树构建算法的应用能力,掌握高级语言的编程方法2. 全面提高学生的程序设计、开发能力五、基本功能:1. 景区旅游信息管理系统中,首先通过遍历景点,给出一个入口景点,。
2. 可以设计景区的旅游景点,确定入口和出口景点3. 可以根据导游策略建立导游线路图并遍历景点4. 可以提供两个任意景点之间的最短路径及最短距离5. 可以通过求最小生成树对景区进行建设和规划六、基本要求:1.任意性:用户可任意设计景区旅游景点、图的存储结构及导游策略2.友好性:界面要友好,输入有提示,尽量展示人性化3.可读性:源程序代码清晰、有层次4.健壮性:用户输入非法数据时,系统要及时给出警告信息
2024/12/7 5:01:37 3KB 景区旅游信息系统
1
利用ZigBee技术实现短距离温湿度的实时采集存储等
2024/11/29 8:38:04 120KB zigbee无线温湿度采集源码
1
本系统主要实现对城市之间最短路径、最少时间、最少花费、最佳路径等的查询(在具体编码时用顶点代替城市,用边代表路径)。
在实现交通咨询系统时要实现以下几个方面的管理功能:(1) 存储交通网信息(2) 查找一个城市到其他城市的最短距离(3) 查找一个城市到其他城市的最佳路径(4) 查找两个城市之间的最短距离(5) 查找两个城市之间的最短路径
2024/11/16 22:07:08 1.06MB 交通咨询系统
1
该程序可以在窗口里用鼠标随意点击来产生不同的“城市”,最短距离也是直观的连线表示,简单易用。
热心提醒:模拟退火法在该程序中没有单一的退火方向,等同于随机遍历,你可以自己想办法设置退火方向,我还没想出来怎么办╮(╯▽╰)╭
2024/9/4 20:05:48 110KB 遗传算法 模拟退火 旅行商问题 c#
1
最短距离点对分治法实现Java代码实现算法课程作业。
JavaSwing实现的图形化界面。
Eclipse工程。
本人写的代码,故项目分数相对较高。
望谅解
2024/7/30 15:50:25 357KB Algorithm src Java
1
带权图的多种算法(有向图,无向图,Dijkstra算法,到每个顶点的最短距离,佛洛依德算法(Floyd),找出每对顶点的最短路径,带权重无向图最小生成树,prim算法,Kruskal算法求最小生成树)java实现,有注释,简单轻松搞懂图,全部是自己实现,
1
共 36 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡