模糊相似矩阵Matlab程序,%三次样条插值程序
2025/6/28 18:57:33 202B 模糊相似矩阵;matlab
1
通过矩阵来计算行列式,支持分数形式输出,也就是说精确到分数,呵呵
2025/6/28 15:43:37 4KB 行列式计算
1
复杂网络聚类系数的matlab编程代码,将复杂网络存储为矩阵,再对其matLab编程,求得复杂网络的集类系数
2025/6/27 18:56:15 921B 复杂网络
1
MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
1
N皇后问题求解支持4—9皇后问题,修改源码调用参数和存储矩阵大小,可以支持更大棋盘求解。
QT新手,做的不好,ヾ(●´□`●)ノ【゜+。
・o谢谢o・。
+゜】ヾ(○´□`○)ノ
2025/6/26 22:45:53 958KB QT 皇后 八皇后 递归
1
在VC中编写的求逆矩阵的C++源文件,可以直接使用。
进行LU分解,求方程组的解,供大家参考。
2025/6/25 2:05:37 35KB 矩阵求逆 C++
1
UI设计包括界面设计、菜单栏布局、进度条、结果展示和图片展示区域划分几个主要任务。
图像预处理包括图像的灰度化、二值化、反色处理、图形锐化、数字分割、归一化等主要任务。
特征提取为使用不同的特征提取方法,对于预处理过的图像,进行数字特征提取。
图像识别是对于数字图像,将特征提取出的数字矩阵数组,采用不同的识别方法,一个个地识别出他们对应的数字,最终显示在界面。
2025/6/24 19:37:25 206.13MB fisher knn svm recognition
1
一个有montecaro模拟晶粒生长的Matlab源程序一个MonteCaro的模拟晶粒生长的程序%初始赋值Ln=200;%格点边长L=zeros(Ln);%格点矩阵Q=120;%总取向数step_num=500;%MC总步数interval_save_jpg=20;%图形存储间隔interval_stastics=2;%晶粒平均参数和相对密度统计间隔stastics_data=zeros(step_num/interval_stastics,5);%存储每interval_stastics次MCS后的平均晶粒尺寸和相对密度,存储格式为(MCS,graincount,averagearea,averagediameter,relativedensity)
2025/6/23 8:25:47 42KB MC 晶粒生长
1

在计算机视觉领域,相机标定是一项至关重要的任务,它能够帮助我们校正图像畸变,获取相机的内在参数,从而实现精确的三维重建和物体定位。
Tsai的标定方法是一种早期提出的、广泛应用于相机标定的经典算法,由Richard Tsai在1987年提出。
本篇文章将深入探讨Tsai的相机标定方法及其在Matlab环境下的实现。
我们来理解Tsai的相机标定理论基础。
该方法基于多视图几何,通过一组已知坐标点(通常是在平面棋盘格上的特征点)在图像中的投影,来求解相机的内在参数矩阵和外在参数矩阵。
内在参数包括焦距、主点坐标和径向畸变系数,而外在参数则表示相机相对于标定板的位姿。
Tsai的标定流程主要包括以下几个步骤:1. 数据采集:拍摄多张包含标定板的图片,确保标定板在不同角度和位置出现,以获取丰富的视图信息。
2. 特征检测:在每张图片中检测并提取标定板的角点,常用的方法有角点检测算法,如Harris角点检测或Shi-Tomasi角点检测。
3. 建立世界坐标与像素坐标的对应关系:将标定板角点在世界坐标系中的位置与在图像中的像素坐标对应起来。
4. 线性化问题:通过极几何约束,将非线性问题线性化,可以使用高斯-牛顿法或Levenberg-Marquardt法进行迭代优化。
5. 求解参数:求解内在参数矩阵K和外在参数矩阵R、t,其中R表示旋转矩阵,t表示平移向量。
6. 校正与验证:利用求得的参数对图像进行畸变校正,并通过重投影误差来评估标定结果的准确性。
在Matlab环境下实现Tsai的标定方法,可以充分利用其强大的数学计算能力和可视化功能。
需要编写代码来完成上述的数据采集和特征检测。
然后,利用内置的优化工具箱进行参数估计。
可以绘制图像和标定板的重投影误差,以直观地查看标定效果。
在提供的压缩包文件e19bb35c303d499aa5c2568a73f0a35f中,可能包含了实现上述过程的Matlab源代码。
代码可能分为几个部分,包括角点检测、标定板坐标匹配、线性化优化以及参数解算等模块。
用户可以通过阅读和运行这些代码,理解Tsai标定方法的工作原理,并将其应用到自己的项目中。
Tsai的相机标定方法是计算机视觉中的一个经典算法,它通过解决非线性优化问题,实现了相机参数的有效估计。
在Matlab环境下,我们可以方便地实现这一算法,对相机进行标定,为后续的视觉应用提供准确的先验信息。
对于初学者来说,理解和实践这个方法,不仅可以加深对计算机视觉原理的理解,也能提高编程和调试能力。
2025/6/20 1:32:22 5KB
1

在MATLAB中,计算三维散乱点云的曲率是一项重要的几何分析任务,尤其是在计算机图形学、图像处理和机器学习等领域。
曲率是衡量表面局部弯曲程度的一个度量,可以帮助我们理解点云数据的形状特征。
曲率的计算通常涉及主曲率、高斯曲率和平均曲率三个关键概念。
主曲率是描述曲面在某一点沿两个正交方向弯曲的程度,通常记为K1和K2,其中K1是最大曲率,K2是最小曲率。
主曲率可以提供关于曲线形状的局部信息,例如,当K1=K2时,表明该点处的曲面是球形;
当K1=0或K2=0时,可能对应于平面区域。
高斯曲率(Gaussian Curvature)是主曲率的乘积,记为K = K1 * K2。
高斯曲率综合了主曲率的信息,能反映曲面上任意点的全局弯曲特性。
如果高斯曲率为正,表明该点在凸形曲面上;
若为负,则在凹形曲面上;
为零时,表示该点位于平面上。
平均曲率(Mean Curvature)是主曲率的算术平均值,H = (K1 + K2) / 2。
它提供了曲面弯曲的平均程度,对于理解物体表面的整体形状变化非常有用。
例如,平均曲率为零的点可能表示曲面的边缘或者尖锐转折。
在MATLAB中,计算这些曲率通常需要以下步骤:1. **数据预处理**:你需要加载散乱点云数据。
这可以通过读取txt文件(如www.pudn.com.txt)或使用特定的数据集来完成。
数据通常包含每个点的XYZ坐标。
2. **邻域搜索**:确定每个点的邻域,通常采用球形邻域或基于距离的邻域。
邻域的选择直接影响曲率计算的精度和稳定性。
3. **拟合曲面**:使用最近邻插值、移动最小二乘法(Moving Least Squares, MLS)或其他方法,将点云数据拟合成一个连续曲面。
在本例中,"demo_MLS"可能是一个实现MLS算法的MATLAB脚本。
4. **计算几何属性**:在拟合的曲面上,计算每个点的曲率。
这涉及到计算曲面的曲率矩阵、主轴和主曲率。
同时,高斯曲率和平均曲率可以通过已知的主曲率直接计算得出。
5. **结果可视化**:你可以使用MATLAB的图形工具,如`scatter3`或`patch`函数,将曲率信息以颜色编码的方式叠加到原始点云上,以直观展示曲率分布。
在实际应用中,曲率计算对于识别物体特征、形状分析和目标检测等任务具有重要价值。
例如,在机器人导航、医学图像分析和3D重建等领域,理解点云数据的几何特性至关重要。
总结来说,MATLAB中的算法通过一系列数学操作和数据处理,可以有效地计算三维散乱点云的主曲率、高斯曲率和平均曲率,从而揭示其内在的几何结构和形状特征。
正确理解和运用这些曲率概念,有助于在相关领域进行更深入的研究和开发。
2025/6/18 16:18:34 130KB
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡