《名师考案丛书:高等代数考研教案(第2版)(北大·第三版)》依照北京大学数学系几何与代数教研室编《高等代数》(第三版)的自然章编排,但为了保持前后内容的渗透及关联,对一些章节的内容作了调整。
如为了完整地介绍化简二次型的方法(第五章),将特征值、特征向量及矩阵的相似对角化(第七章),正交矩阵及用正交变换化二次型为标准形(第九章)等内容均集中到第五章。
2025/9/28 1:17:02 20.13MB 数学基础 高等代数
1
目的效果:(1)在屏幕中心建立三维坐标系 Oxyz,x 轴水平向右,y 轴铅直向上,z 轴垂直于屏幕指向观察者。
 (2)以三维坐标系 Oxyz 的原点为立方体体心绘制边长为 a 的立方体线框模型。
 (3)使用旋转变换矩阵计算立方体线框模型围绕三维坐标系原点变换前后的顶点坐标。
 (4)使用双缓冲技术在屏幕上绘制三维立方体线框模型的二维正交投影图。
 使用键盘方向键旋转立方体线框模型。
 (5)使用工具条上的“动画”按钮播放立方体线框模型的旋转动画。
2025/9/27 22:37:03 38.45MB 计算机图形
1
基于stc89c51的密码锁,实现矩阵键盘的输入密码,储存密码,识别密码,断电保存
2025/9/21 19:17:33 288KB 51 单片
1
《随机过程教程讲义》是一本系统介绍随机过程理论及其应用的教学资料,涵盖基础概念、模型构建及实际案例分析,适用于科研与教学。


### 随机过程讲义知识点解析

#### 马尔可夫链的基本概念与性质

马尔可夫链是一种重要的随机过程模型,其特点在于系统在任一时刻的状态仅依赖于前一个状态而与其他历史无关。
这种特性使得马尔可夫链被广泛应用于统计学、计算机科学、物理学和工程学等领域。


**一步转移概率矩阵与状态关系**

讲义中通过具体例子展示了如何构建一步转移概率矩阵,并分析了各个状态之间的相互联系。
例如,对于一个包含{0,1,2,3}的状态集的马尔可夫链,其一步转移概率矩阵如下所示:

[
P = begin{pmatrix}
1/2 & 1/2 & 0 & 0 \1/4 & 1/4 & 1/4 & 1/4 \0 & 0 & 0 & 1
end{pmatrix}
]

通过分析矩阵中的元素,可以得知状态0和状态1之间存在互达性(即两者间可相互转换),而从状态2可以到达其他所有状态,但一旦进入状态3,则永远停留在那里。
因此,状态3是一个吸收态。


#### 遍历性与平稳分布

遍历性是马尔可夫链的重要性质之一,表示在长时间运行后每个状态的访问频率趋于稳定值,显示出系统的长期行为模式。
而平稳分布则描述了这一稳定的概率分布情况。


讲义中讨论了两种不同的一步转移矩阵,并分析它们是否具有遍历性。
第一种情况下该马尔可夫链具备遍历性并计算出了其平稳分布(pi),满足条件(pi P = pi);
而在第二种情形下,由于n步转移矩阵显示随时间变化而不收敛的特性,因此不具备遍历性。


#### 泊松过程的定义等价性

泊松过程是一种关键随机模型,在描述独立且发生率恒定事件的时间间隔方面具有独特性质。
讲义中提出了两种不同的泊松过程定义,并通过Kolmogorov微分方程验证了这两种定义的一致性。


具体而言,通过对短时间内的行为分析导出了泊松过程的微分方程,该推导基于两个基本特性:事件的发生是独立且在短时间内发生率恒定。
这不仅证明了两种定义之间的等价关系,也加深了对泊松过程内在机制的理解。


这份随机过程讲义深入浅出地讲解了马尔可夫链和泊松过程的核心概念及其应用,并通过实例分析帮助读者理解这些模型的数学基础与实际意义,在学术研究及工业应用中都具有重要价值。
2025/9/18 21:33:05 1.41MB 讲义基础,提高,升华
1
MATLAB实现RLE对矩阵Z字形游程编码(行程编码)RLE对矩阵Z字形游程编码(行程编码),可以对矩阵数据进行游程压缩编码。
解码代码请看我的上传!
2025/9/17 9:54:13 3KB MATLAB RLE Z字形 游程编码
1
广义逆矩阵C++实现求逆矩阵求转置等内容
2025/9/11 15:50:55 3.5MB 广义逆矩阵 C++实现
1
主要是利用c语言对矩阵相乘进行了编程,嵌入此程序使得处理数据更加简便。
2025/9/11 13:22:30 4KB 矩阵相乘
1
###数据可视化-PowerBI####一、课前准备与快速入门在开始学习PowerBI之前,我们需要做好一些准备工作:1.**安装PowerBI**:首先确保已经安装了PowerBIDesktop,可以从Microsoft官网免费下载。
2.**了解图表类型**:熟悉常用的图表类型如折线图、条形图、饼图等,这些图表占据了大多数数据可视化的应用场景。
3.**熟悉PowerQuery和PowerPivot**:PowerQuery用于数据清洗和导入,PowerPivot则用于构建复杂的数据模型。
4.**准备数据源**:准备好要分析的数据,并了解如何将其导入PowerBI。
####二、PowerBI简介PowerBI是一款由Microsoft开发的商业智能工具,它提供了从单一视图到复杂的交互式报告的所有功能。
PowerBI主要有三个版本:-**Desktop**:主要用于创建和编辑报表,是最常用的版本。
-**Service(ProandPremium)**:用于共享和协作,支持实时刷新和大规模部署。
-**Mobile**:可在移动设备上查看报告。
####三、PowerBI界面介绍PowerBI的界面主要分为三个部分:1.**多页报表视图**:显示最终的可视化结果。
2.**数据视图**:进行数据建模的地方,可以在此添加新表、创建关系和度量值。
3.**关系视图**:用于查看和管理数据表之间的关系。
####四、PowerBI数据可视化流程1.**获取数据**:使用PowerQuery从各种来源导入数据。
2.**数据建模**:在PowerPivot中对数据进行清理、转换并建立模型。
3.**数据可视化**:利用PowerView创建交互式报告。
4.**分发数据**:将完成的报告发布到PowerBI服务并与他人共享。
####五、可视化图表类型PowerBI提供了多种类型的图表供用户选择,以适应不同的数据展示需求:1.**常用图表**:-**折线图**:用于展示随时间变化的趋势。
-**条形图**:适用于比较不同类别的数量。
-**饼图**:展示各个部分在整体中的占比。
-**散点图**:显示数据点间的分布或关联。
2.**高级图表**:-**卡片图**:展示单个数值。
-**雷达图**:用于比较多个变量。
-**瀑布图**:展示数据的增减变化过程。
-**箱线图**:展示数据分布的统计摘要。
-**标靶图**:对比实际值与目标值。
-**漏斗图**:展示业务流程中的转化率。
-**树状图**:用于层次结构数据的可视化。
-**气泡图**:同时展示三个维度的数据。
-**词云图**:以文字大小表示频率。
-**桑基图**:展示数据流的方向和量级。
-**热力图**:展示二维矩阵中的数据密度。
####六、项目实战1.**数据导入与整理**:-**导入数据**:使用PowerQuery从Excel、数据库等来源导入数据。
-**使用查询编辑器**:对数据进行清洗和转换。
-**数据库导入数据**:直接连接到MySQL等数据库并导入数据。
2.**建立数据分析模型**:-**建立数据模型**:在PowerPivot中创建表格间的关系。
-**新建度量值和新建列**:利用DAX函数创建新的计算字段。
-**DAX函数**:包括聚合函数、逻辑函数、信息函数等。
3.**可视化报告**:-**生成可视化报告**:在PowerView中创建交互式报告。
-**报告的筛选设置**:为报告添加筛选条件。
-**报告的格式设置**:调整图表的颜色、字体等样式。
-**设置报告的钻取**:让用户能够深入探索数据细节。
4.**Dashboard的制作原则**:-**选择合适的图表**:根据数据特性选择最合适的图表类型。
-**Dashboard的设计建议**:保持布局清晰,确保信息一目了然。
####七、拓展点、未来计划、行业趋势随着大数据技术的发展,数据可视化工具的需求日益增加。
PowerBI作为一款强大的工具,在未来有望继续扩展其功能,更好地满足企业和个人的需求。
例如,增强机器学习集成能力,提高自动化程度等。
####八、总结通过本课程的学习,我们不仅掌握了PowerBI的基本使用方法,还深入了解了数据可视化的重要性以及如何有效地运用各种图表来表达数据背后的故事。
希望每位学员都能够熟练地使用PowerBI,并在未来的工作中发挥重要作用。
2025/9/10 15:28:55 4.62MB
1
ILnumerics是一个十分好用的类库对于数学运算尤其是矩阵的计算有着强大的功能与MATLAB类库使用方式很相似早期作为开源软件后变为商业软件
2025/9/4 6:40:03 17.26MB ILnumerics
1
本文来自于csdn,主要讲解了对话系统技能、现状、机器学习和深度学习、对话机器人的等等。
对话系统(对话机器人)本质上是通过机器学习和人工智能等技术让机器理解人的语言。
它包含了诸多学科方法的融合使用,是人工智能领域的一个技术集中演练营。
图1给出了对话系统开发中涉及到的主要技术。
图1给出的诸多对话系统相关技术,从哪些渠道可以了解到呢?下面逐步给出说明。
图1对话系统技能树矩阵计算主要研究单个矩阵或多个矩阵相互作用时的一些性质。
机器学习的各种模型都大量涉及矩阵相关性质,比如PCA其实是在计算特征向量,MF其实是在模拟SVD计算奇异值向量。
人工智能领域的很多工具都是以矩阵语言来编程的,比如主流的深度学习
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡