采用4路MIC阵列采集声音数据,通过M0进行实时分析,利用空间波束直接的时间相位差以及相干性,确定声音源的空间访问。
2024/6/16 17:13:31 228KB stm32 m0 音源定位 MIC阵列
1
根据Fraunhofer衍射理论,建立了基于相位调制的二维M×N激光相干阵列的远场光强分布理论模型。
结合应用实际,对5×5激光相干阵列的远场光强分布进行数值模拟,分析了不同调制相位对远场光强分布的影响。
结果表明,远场光强分布的主极大(小)的位置随调制相位变化,相对强度也随之变化;
不同阵列结构,光强分布不同,每列(行)相邻两阵元上加载的相位差为π时,出现较多的主极大和次极大且对称分布。
这些结果可为应用相位调制去控制远场光强分布提供有益的参考。
1
利用光外差检波所具有的成像作用的显微镜即是光外差激光显微镜。
在外差检波中,检测的是频率不同的两种光之间的差频,只当整个光接收面上两种光的相位差一致时才能检测出差拍成分,不一致时在整个光接收器内互相抵消而检测不出。
2024/5/6 15:47:20 2.22MB
1
本装置采用单相桥式DC-AC逆变电路结构,以TI公司的浮点数字信号控制器TMS320F28335DSP为控制电路核心,采用规则采样法和DSP片内ePWM模块功能实现SPWM波。
最大功率点跟踪(MPPT)采用了恒压跟踪法(CVT法)来实现,并用软件锁相环进行系统的同频、同相控制,控制灵活简单。
采用DSP片内12位A/D对各模拟信号进行采集检测,简化了系统设计和成本。
本装置具有良好的数字显示功能,采用CPLD自行设计驱动的4.3’’彩色液晶TFTLCD非常直观地完成了输出信号波形、频谱特性的在线实时显示,以及输入电压、电流、功率,输出电压、电流、功率,效率,频率,相位差,失真度参数的正确显示。
本装置具有开机自检、输入电压欠压及输出过流保护,在过流、欠压故障排除后能自动恢复。
2023/12/21 22:06:16 1.19MB 光伏并网
1
运用STM32F407写的FFT,分辨率是1Hz。
可以测量信号频率,以及谐波分析,失真度。
另外还可以测量两个波形的相位差
2023/12/13 8:05:57 3.71MB STM32 FFT 失真度 谐波分析
1
自定义过零检测生产函数测量信号之间的相位差
2023/11/30 12:36:41 606B 过零 检测 函数 相位差
1
程序为相关干涉仪测向方法的matlab仿真。
以5元圆天线阵列为接收阵列,计算两元间的相位差,形成标准库,并通过相关的方式测得信号来波方向。
运行untitled1,输入相关参数即可实现功能。
MATLAB代码
2023/8/6 22:05:29 38KB 信号与系统
1
时移相位差校正法,通过时移,进行前后两次FFT分析,利用离散频谱对应峰值谱线的相位差以求出频率和相位校正量
2023/7/13 8:23:46 880B 时移相位差
1
本低频数字式相位测量仪基于多周期同步计数法和DDS原理,以89C55单片机为控制核心,现场可编程逻辑器件(FPGA)为处理核心,由数字式移相信号发生器、移相网络、相位测量仪三部分组成,整个系统具有极高的性价比。
其中,移相信号发生器采用14位高精度数模转换器DAC904,其输出信号幅度范围为10mV~9VP-P,频率为0.1Hz~3MHz时无明显失真,输出相位差为0°~359.95°。
相位测量采用MAX913比较器芯片,测量范围为1Hz~500kHz,远超题目要求。
移相网络的连续移相范围为-45°~+45°,达到了预定要求。
整个系统模块化程度好、集成度高,具有友好人机交互界面且易于外部功能扩展。
关键词:DDS移相信号 移相网络 相位测量
2023/7/10 9:05:21 461KB 低频 数字式 相位测量仪
1
钻研了由光纤非线性引起的偏振发抖征兆。
当使用最佳偏振校对于时,基于两个正交线性偏振态,在偏振复用(PM)体系中患上出无关偏振发抖的普通公式。
经由仿真钻研了基于NRZ码的100Gb/sPM体系,针对于两种正交偏振光的不合功率以及相位差,患上到了对于偏振发抖以及庞加莱球图的Stocks参数。
下场评释,当组合的PM信号为线性或者圆形偏振态时,偏振发抖将患上到抑制。
2023/5/13 16:40:50 966KB Optical Fiber Communication; Polarization
1
共 27 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡