为了获得超高精度面形的光学元件并验证离子束的修正能力,对应用离子束修正大面形误差光学元件的问题进行了实验研究。
通过改变离子源光阑尺寸的方式获得了不同束径的离子束去除函数,并对一直径为101mm、初始面形峰谷(PV)值为417.554nm、均方根(RMS)值为104.743nm的熔石英平面镜进行了离子束修形实验。
利用10、5、2mm光阑离子源的组合,进行了12次迭代修形,最终获得了PV值为10.843nm、RMS值为0.872nm的超高精度表面。
实验结果表明,应用离子束可以对大面形误差光学元件进行修正,并且利用更大和更小束径离子束去除函数的组合进行优化,可以进一步提升加工效率和精度。
2024/12/24 7:34:38 3.49MB 光学制造 离子束 面形修正 去除函数
1
输入参数螺距、直径、转速、桨叶数;
螺旋桨静拉力计算,扭矩,滑流速度,功率等。
2024/11/4 4:37:55 106KB 螺旋桨 航模
1
提出了一种可以实现同种或异种金属材料固态冶金结合的新型激光冲击点焊工艺。
实验中,采用Nd∶YAG激光器发出的脉冲激光驱动厚度为30μm的钛箔产生局部塑性变形,并以超高速撞击厚度为100μm的铝板以实现点焊连接。
当钛箔的飞行距离分别为0.3、0.6、0.9mm时,焊点中心的回弹区域面积依次减小,而结合区域面积依次增大。
采用冷镶嵌技术制样用来观察焊点的截面特征,发现了沿焊点直径方向振幅和周期变化的波形界面和平直型界面。
为研究激光冲击点焊对材料力学性能的影响,应用纳米压痕测试技术测量了垂直于焊接界面方向材料的显微硬度,结果表明焊接界面附近材料的硬度值明显提高。
此外,焊接试样的拉伸剪切测试结果表明,当复板和基板发生有效固态冶金结合时其连接强度较高,失效形式通常是焊点边缘破裂。
激光冲击点焊为厚度在微米级的异种金属箔板的点焊连结开辟了新途径。
2024/10/12 17:05:55 5.77MB 激光技术 激光冲击 飞行距离 焊接界面
1
搭建了一套基于Photo-CELIV测量载流子迁移率的实验系统。
采用Nd3+YAG脉冲激光器作为诱导光源,在1~20Hz的工作频率下,实验系统可输出波长为532nm、脉宽为10ns的激光脉冲,其能量在0.1~1mJ范围内可调,光斑直径小于2mm,激光器持续工作5h后的能量不稳定度为±8%。
该研究为半导体材料载流子迁移率的测量提供了一定的参考。
2024/10/10 10:03:35 2.46MB 激光技术 固体激光 光诱导线 载流子迁
1
R语言期末设计对石油岩采样进行数据分析,实现对石油岩样的基本数据计算,计算岩样直径,厚度的基本关,通过简单绘图工具展示岩样直径,厚度,含油量之间的关系
2024/9/16 21:37:27 42KB R语言
1
《ANSYS_LS_DYNA模拟鸟撞飞机风挡的动态响应》鸟撞问题在飞机设计中至关重要,尤其是在飞机起飞和降落时,高速运动的飞机与鸟类相撞可能导致严重损伤,甚至造成机毁人亡的灾难。
特别是飞机的前风挡部分,由于迎风面积大,成为鸟撞概率较高的区域,而风挡玻璃的强度相对较低,因此对风挡受鸟撞冲击的模拟分析显得尤为必要,以提升飞行安全性。
早期的抗鸟撞设计主要依赖实验方法,但随着计算机技术和有限元数值计算理论的发展,现在越来越多地采用数值计算来分析鸟撞问题。
目前的有限元模型主要分为解耦解法和耦合解法。
解耦解法将鸟撞冲击力作为已知条件,单独求解风挡的动态响应,但鸟撞载荷模型的不确定性会影响求解精度。
耦合解法则考虑碰撞接触,通过协调鸟体与风挡接触部位的条件,联合求解,能更直观地模拟整个鸟撞过程。
本文采用ANSYS_LS_DYNA软件,建立鸟撞风挡的三维模型,研究鸟撞风挡的动态响应特征。
在建立有限元模型时,使用ANSYS软件,简化了计算过程,忽略了对风挡动态响应影响不大的结构因素,如机身、后弧框和铆钉等,将其替换为边界固定。
风挡结构为圆弧形,材料为特定型号的国产航空玻璃,鸟撞击点设在风挡中部,撞击角度为29°。
选用LS-DYNA材料库中的塑性动力学材料模型,破坏准则设定为最大塑性应变失效模式,当材料塑性应变达到5%时材料破坏。
鸟体的模拟是鸟撞分析的一大挑战,由于真实鸟体的本构特性难以准确描述,通常采取弹性体、弹塑性体或理想流体等简化模型。
本文中,鸟体被简化为质量1.8kg、直径14cm的圆柱体,材料选用弹性流体模型。
计算结果显示,当鸟撞速度达到540km/h(相对于风挡的绝对速度)时,风挡的后弧框处有效塑性应变达到5%,风挡破坏。
据此,计算得出风挡的安全临界速度为150m/s。
在这一速度下,风挡后弧框处首先发生破坏,成为结构弱点。
撞击时的最大应力主要集中在后弧框及其下方,而非撞击点。
此外,鸟撞还会导致风挡结构产生位移。
风挡下方通常布置有精密仪器,因此必须考虑鸟撞引起的位移情况。
鸟体撞击后在风挡上滑行,挤压风挡表面,产生较大位移。
计算表明,在150m/s的撞击速度下,最大位移可达38mm,位于撞击点和后弧框之间。
风挡表面位移随着时间呈现出先向下位移,然后因弯曲波反弹而振荡的行为。
总结来说,鸟撞风挡的最危险区域位于后弧框及其下方。
不同结构的风挡有不同的鸟撞安全临界速度、最大位移和撞击时间。
对于本文的风挡模型,临界速度为450km/h,最大位移为38mm,撞击时间约为7ms。
这些分析结果对于飞机设计改进和飞行安全性的提升具有重要指导意义。
2024/9/1 16:57:18 218KB dyna
1
NOMEDOPROJETO问题问题LoubimIpsumClassactenttacitisociosquadlitoraTorctantonconubianostra,perinceptoshimenaeos。
Proincongueauctorarcuvelpharetra。
毛里斯坐在amet车辆直径。
在前庭庭艺作品中,《天妇罗》(digussimquis)。
Nampharetraaliquamligula,utlaoreetelitmollistempor。
Etiamnoninterdumenim。
非整数风险,非委内瑞拉毛利人。
Aenean坐着ametpellentesquemetus,一个无礼的爱神。
Fusce坐在前。
毛茸茸的种子。
在效率上应注意非溃疡性疾病。
Descriçãodasoluçã
2024/6/27 22:42:34 3KB
1
可以求的网络的最短路径,直径,介数,度分布,聚类系数-Cannetworkseektheshortestpath,diameter,referredtothenumberofdegreedistribution,clusteringcoefficient
1
看大小就知道很全啦查看地址https://blog.csdn.net/qq_43333395/article/details/98508424目录:数据结构:1.RMQ(区间最值,区间出现最大次数,求区间gcd)2.二维RMQ求区间最大值(二维区间极值)3.线段树模板(模板为区间加法)(线段树染色)(区间最小值)4.线性基(求异或第k大)5.主席树(静态求区间第k小)(区间中小于k的数量和小于k的总和)(区间中第一个大于或等于k的值)6.权值线段树(求逆序对)7.动态主席树(主席树+树状数组)(区间第k大带修改)8.树上启发式合并(查询子树的优化)9,树状数组模板(求区间异或和,求逆序对)扩展10.区间不重复数字的和(树状数组)11.求k维空间中离所给点最近的m个点,并按顺序输出(KD树)12.LCA(两个节点的公共父节点)动态规划:1.LIS(最长上升子序列)2.有依赖的背包(附属关系)3.最长公共子序列(LCS)4.树形DP5.状压DP-斯坦纳树6.背包7.dp[i]=min(dp[i+1]…dp[i+k]),multset博弈:1.NIM博弈(n堆每次最少取一个)2.威佐夫博弈(两堆每次取至少一个或一起取一样的)3.约瑟夫环4.斐波那契博弈(取的数依赖于对手刚才取的数)5.sg函数数论:1.数论素数检验:普通素数判别线性筛二次筛法求素数米勒拉宾素数检验2.拉格朗日乘子法(求有等式约束条件的极值)3.裂项(多项式分子分母拆分)4.扩展欧几里得(ax+by=c)5.勾股数(直角三角形三边长)6.斯特林公式(n越大越准确,求n!)7.牛顿迭代法(求一元多次方程一个解)8.同余定理(a≡b(modm))9.线性求所有逆元的方法求(1~pmodp的逆元)10.中国剩余定理(n个同余方程x≡a1(modp1))11.二次剩余((ax+k)2≡n(modp)(ax+k)^2≡n(modp)(ax+k)2≡n(modp))12.十进制矩阵快速幂(n很大很大的时候)13.欧拉函数14.费马小定理15.二阶常系数递推关系求解方法(a_n=p*a_{n-1}+q*a_{n-2})16.高斯消元17.矩阵快速幂18.分解质因数19.线性递推式BM(杜教)20.线性一次方程组解的情况21.求解行列式的逆矩阵,伴随矩阵,矩阵不全随机数不全组合数学:1.循环排列(与环有关的排列组合)计算几何:1.三角形(求面积))2.多边形3.三点求圆心和半径4.扫描线(矩形覆盖求面积)(矩形覆盖求周长)5.凸包(平面上最远点对)6.求凸多边形的直径7.求凸多边形的宽度8.求凸多边形的最小面积外接矩形9.半平面交图论:基础:前向星1.最短路(优先队列dijkstra)2.判断环(tarjan算法)3.最小生成树(Kruskal模板)4.最小生成树(Prim)5.Dicnic最大流(最小割)6.无向图最小环(floyd)7.floyd算法的动态规划(通过部分指定边的最短路)8.图中找出两点间的最长距离9.最短路(spfa)10.第k短路(spfa+A*)11.回文树模板12.拓扑排序(模板)13.次小生成树14.最小树形图(有向最小生成树)15.并查集(普通并查集,带权并查集,)16.求两个节点的最近公共祖先(LCA)17.限制顶点度数的MST(k度限制生成树)18.多源最短路(spfa,floyd)19.最短路(输出字典序最小)20.最长路图论题目简述字符串:1.字典树(多个字符串的前缀)2.KMP(关键字搜索)3.EXKMP(找到S中所有P的匹配)4.马拉车(最长回文串)5.寻找两个字符串的最长前后缀(KMP)6.hash(进制hash,无错hash,多重hash,双hash)7.后缀数组(按字典序排字符串后缀)8.前缀循环节(KMP的fail函数)9.AC自动机(n个kmp)10.后缀自动机小技巧:1.关于int,double强转为string2.输入输出挂3.低精度加减乘除4.一些组合数学公式5.二维坐标的离散化6.消除向下取整的方法7.一些常用的数据结构(STL)8.Devc++的使用技巧9.封装好的一维离散化10.Ubuntu对拍程序11.常数12.Codeblocks使用技巧13.java大数叮嘱共173页
2024/5/29 4:58:24 8.42MB ACM ICPC CCPC
1
运输机单向运转,工作平稳,运输带速度允许速度误差为-5%~+5%,使用期限为8年,小批量生产,单班制工作。
运输带推力F=2800N,运输机速度V=1.4m/s,卷筒直径D=400mm。
2024/3/12 12:38:36 5.64MB 带式运输机 传动装置
1
共 42 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡