针对复杂运动背景中慢速小目标检测误检率高,实时性差等问题,提出了基于自适应阈值分割的慢速小目标检测算法。
首先计算连续两帧图像特征点的金字塔光流场,对光流场进行滤波,获取匹配特征点集合。
然后对图像运动背景进行建模,拟合投影模型参数,通过投影模型得到运动背景补偿图像,进行图像差分处理,获得差分图像。
最后迭代计算差分图像的自适应阈值,修正差分阈值,差分图像二值分割,检测出运动目标。
实验结果表明算法能够准确地检测出复杂背景中的慢速小目标,虚警率为2%,目标漏检率为2.6%,目标检测准确率95.4%,每帧图像目标检测时间为38ms,能够满足运动目标检测对实时性的要求。
1
整理了几段我在做运动目标检测时收集的视频。
背景是静态的,可用于运动目标检测。
一共是八段视频,希望对大家有用
1
ViBe源代码运动目标检测原文:http://orbi.ulg.ac.be/bitstream/2268/145853/1/Barnich2011ViBe.pdf对应博文:http://blog.csdn.net/zhuangxiaobin/article/details/25988281
2025/5/27 0:09:10 4KB ViBe 源代码 运动目标检测
1
内部包含R-CNN、FastRCNN、FasterRCNN、SPP、SSD、SegNet、YOLOv1~v3、FCN共十篇目标检测的论文原文。
2025/5/3 8:40:04 30.97MB 目标检测
1
YOLO为一种新的目标检测方法,该方法的特点是实现快速检测的同时还达到较高的准确率,很详细的介绍
2025/4/18 0:13:37 5.07MB YOLO 人工智能 算法
1
基于VIBE的运动目标检测,其根据随机采样原理进行背景建模,检测速度快,准确率高。
2025/4/9 15:26:48 4KB VIBE 运动目标检测 背景建模
1
视觉跟踪技术作为计算机视觉领域的热门课题之一,是对连续的图像序列进行运动目标检测、提取特征、分类识别、跟踪滤波、行为识别,以获得目标准确的运动信息参数(如位置、速度等),并对其进行相应的处理分析,实现对目标的行为理解。
视觉跟踪是指对图像序列中的运动目标进行检测、提取、识别和跟踪,获得运动目标的运动参数,如位置、速度、加速度和运动轨迹等,从而进行下一步的处理与分析,实现对运动目标的行为理解,以完成更高一级的检测任务。
2025/4/6 0:40:14 8.68MB 视觉跟踪 avi监控视
1
Vibe算法,可用于动态目标检测,matlab,可以直接运行
2025/4/2 3:06:47 3KB Vibe算法 动态目标检测
1
vs2013+opencv2.4.9亲测可用,运动目标检测效果良好,备注详细
2025/3/29 4:19:13 5KB vibe算法
1
目标检测NMS-GPU和Cython(非极大值抑制)在window下的编译文件,包括soft_NMS实现。
小批量情况下Cython速度高于GPU
2025/3/26 1:07:25 1.59MB 目标检测 NMS Window
1
共 174 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡