针对城市道路交通拥堵预警问题,提出了一种基于深度学习的预测模型。
通过归纳合并交通流参数、环境状态、时段等基础数据来构建交通流特征向量并确定四种预测状态。
采用深度学习的自编码网络方法从无标签数据集中学习获取可表征数据深层特征的隐层参数并生成新特征集。
应用Softmax回归对有标签的新特征集进行学习生成预测分类器,模型可对交通拥堵状况进行多态预测。
通过仿真对比分析,预测模型具有较省略特征学习的预测算法更好的预测性能,平均预测精度可达85%。
2024/12/10 4:56:21 181KB 交通拥堵
1
该数据集只保留了原来iris(鸢尾花卉)数据集3个类virginica,versicolor和setosa中的versicolor和setosa,并将versicolor用0.0表示,setosa用1.0表示。
每类50个样本;
每个样本是一个4维的特征向量,萼片长,萼片宽,花瓣长,花瓣宽;
2024/11/12 8:31:35 2KB iris 鸢尾花卉 数据集
1
本文用qr分解办法求对称矩阵特征值和特征向量,适合于大型矩阵求特征值,而且用的是迭代法,不同于matlab原有程序的qr分解
2024/11/8 2:27:01 1000B 特征值分解
1
手势识别,基于MATLAB。
提取了一种手势识别的算法,通过皮肤颜色模型将手势分割出来,然后追踪其边缘,再通过傅里叶系统作为特征向量进行识别。
识别率很高的。
手势
2024/10/18 21:43:02 68KB 手势 MATLAB 手势识别 算法
1
包含QR分解法,其中有北航大作业三道题目完整版,程序运行无误,另外还收集到java版本。
保质保量
2024/10/12 6:45:46 73KB QR 分解法 特征值 特征向量
1
CroppedYale人脸数据降维的MATLAB代码,使用PCA,SVD和MATLAB自带的PCA对比时间、准确度,可以直接运行。
对比中心化给PCA带来的影响;
对比PCA与SVD的异同;
选取合适的维度k,并观察k个特征向量对应的图像;
对比自己实现的PCA算法与matlab自带的PCA函数的性能
2024/10/6 14:15:31 787KB PCA SVD 人脸数据降维 MATLAB
1
C#求矩阵运算代码,特征值特征向量含加、减、乘运算,转换矩阵等等……
2024/9/20 18:46:40 98KB C#特征值
1
现在我们回到LDA的原理上,我们在第一节说讲到了LDA希望投影后希望同一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大,但是这只是一个感官的度量。
现在我们首先从比较简单的二类LDA入手,严谨的分析LDA的原理。
    假设我们的数据集D={(x1,y1),(x2,y2),...,((xm,ym))}D={(x1,y1),(x2,y2),...,((xm,ym))},其中任意样本xixi为n维向量,yi∈{0,1}yi∈{0,1}。
我们定义Nj(j=0,1)Nj(j=0,1)为第j类样本的个数,Xj(j=0,1)Xj(j=0,1)为第j类样本的集合,而μj(j=0,1)μj(j=0,1)为第j类样本的均值向量,定义Σj(j=0,1)Σj(j=0,1)为第j类样本的协方差矩阵(严格说是缺少分母部分的协方差矩阵)。
    μjμj的表达式为:μj=1Nj∑x∈Xjx(j=0,1)μj=1Nj∑x∈Xjx(j=0,1)    ΣjΣj的表达式为:Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)    由于是两类数据,因此我们只需要将数据投影到一条直线上即可。
假设我们的投影直线是向量ww,则对任意一个样本本xixi,它在直线ww的投影为wTxiwTxi,对于我们的两个类别的中心点μ0,μ1μ0,μ1,在在直线ww的投影为wTμ0wTμ0和wTμ1wTμ1。
由于LDA需要让不同类别的数据的类别中心之间的距离尽可能的大,也就是我们要最大化||wTμ0−wTμ1||22||wTμ0−wTμ1||22,同时我们希望同一种类别数据的投影点尽可能的接近,也就是要同类样本投影点的协方差wTΣ0wwTΣ0w和wTΣ1wwTΣ1w尽可能的小,即最小化wTΣ0w+wTΣ1wwTΣ0w+wTΣ1w。
综上所述,我们的优化目标为:argmaxwJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)wargmax⏟wJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)w    我们一般定义类内散度矩阵SwSw为:Sw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)TSw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)T    同时定义类间散度矩阵SbSb为:Sb=(μ0−μ1)(μ0−μ1)TSb=(μ0−μ1)(μ0−μ1)T    这样我们的优化目标重写为:argmaxwJ(w)=wTSbwwTSwwargmax⏟wJ(w)=wTSbwwTSww    仔细一看上式,这不就是我们的广义瑞利商嘛!这就简单了,利用我们第二节讲到的广义瑞利商的性质,我们知道我们的J(w)J(w)最大值为矩阵S−12wSbS−12wSw−12SbSw−12的最大特征值,而对应的ww为S−12wSbS−12wSw−12SbSw−12的最大特征值对应的特征向量!而S−1wSbSw−1Sb的特征值和S−12wSbS−12wSw−12SbSw−12的特征值相同,S−1wSbSw−1Sb的特征向量w′w′和S−12wSbS−12wSw−12SbSw−12的特征向量ww满足w′=S−12www′=Sw−12w的关系!    注意到对于二类的时候,SbwSbw的方向恒为μ0−μ1μ0−μ1,不妨令Sbw=λ(μ0−μ1)Sbw=λ(μ0−μ1),将其带入:(S−1wSb)w=λw(Sw−1Sb)w=λw,可以得到w=S−1w(μ0−μ1)w=Sw−1(μ0−μ1),也就是说我们只要求出原始二类样本的均值和方差就可以确定最佳的投影方向ww了。
2024/7/30 21:57:26 3KB MATLAB 人脸识别 LDA knn
1
内部包含orl人脸数据库;
朴素贝叶斯分类数值型数据、取点测比例距、训练数据集特征向量化、(PCA+adaboostPCA+SVM人脸识别(可用,全面))四种人脸识别相关的功能,经过测试均可用,4者代码相互之间没有关系,且第四个“测试成功@(PCA+adaboostPCA+SVM(可用,全面))”可以完整进行人脸识别,下载者根据功能需要选择使用
2024/7/24 12:37:36 22.43MB 人脸识别 MATLAB PCA+adaboost orl
1
原创,测试识别率0.99,重构图像完全比不上PCA,但能满足分类要求。
可下载后直接运行,并保存特征向量数据
2024/7/21 9:08:02 5.1MB LDA 人脸识别
1
共 87 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡