关于图形图像处理的问题一直是多年来研究的话题,在信息技术高速发展的今天,图像的处理已应用到社会的各个领域。
图像分割就是为了某一特定目的,通过一定的方法把图像按照其特征分成各具特性的区域,提取出感兴趣目标的技术和过程,进而再对目标区域进行研究。
它是图像处理、模式识别和人工智能等多个领域中的关键课题,也是计算机处理视觉技术的首要的、关键的关键步骤。
图像分割的应用非常广泛,几乎出现在关于图像处理的所有领域。
因此,从20世纪60年代以来,图像分割一直都是图像研究技术的热点。
1
独立分量分析是一类多通道信号分解方法,是信号处理技术研究邻域的一项前沿热点。
2025/3/29 17:53:47 19.45MB ICA
1
基于openlayers3的webgis客户开发demo,功能丰富,可直接二次开发。
定位、聚点图、热点图、个性图、路径动画、动画点、图形绘制、军标绘制、影像过滤、区域分割、地形渲染、最近点分析、弹出框、图表
2025/3/23 21:43:37 19.23MB webgis openlayers 定位 聚点图
1
《大数据HBase——JavaAPI深度解析》在大数据领域,HBase作为一个分布式、列式存储的NoSQL数据库,因其高效、可扩展的特性而被广泛应用。
本资料主要围绕HBase的JavaAPI进行深入探讨,旨在帮助读者理解并掌握如何利用Java进行HBase的操作。
HBase是构建在Hadoop文件系统(HDFS)之上的,它提供了实时读写能力,适用于海量数据的存储。
其设计灵感来源于Google的Bigtable,但HBase更注重于提供高并发和低延迟的数据访问。
HBase的数据模型是基于行的,每个表由行和列族组成,列族下又包含多个列,这样的设计使得数据的存储和查询更加灵活。
在JavaAPI层面,我们首先需要了解HBase的基本操作类,如HBaseAdmin用于管理表,HTable接口用于与表交互,HTableDescriptor用于描述表的结构。
创建表时,我们需要定义表名和列族,列族下可以动态添加列。
例如:```javaHTableDescriptordesc=newHTableDescriptor(TableName.valueOf("myTable"));desc.addFamily(newHColumnDescriptor("cf"));//创建一个名为"cf"的列族```插入数据到HBase中,我们使用Put对象,将数据放入行键和列键对应的单元格中:```javaPutput=newPut(Bytes.toBytes("rowKey"));put.addColumn(Bytes.toBytes("cf"),Bytes.toBytes("qualifier"),Bytes.toBytes("value"));htable.put(put);```查询数据则通过Get对象,指定行键和列键,获取对应单元格的值:```javaGetget=newGet(Bytes.toBytes("rowKey"));get.addColumn(Bytes.toBytes("cf"),Bytes.toBytes("qualifier"));Resultresult=htable.get(get);```HBase还提供了Scan对象,用于扫描表中的多行数据。
通过设置StartRow和StopRow,我们可以指定扫描的范围;
通过addFamily和addColumn,我们可以指定扫描的列族或特定列。
```javaScanscan=newScan();scan.addFamily(Bytes.toBytes("cf"));ResultScannerscanner=htable.getScanner(scan);for(Resultres:scanner){//处理结果}```此外,HBase的JavaAPI也支持批量操作,如BulkLoadHFile,这在导入大量数据时能显著提升效率。
还有RegionServer和ZooKeeper的角色,它们在HBase集群中起着至关重要的作用,确保数据的分布和一致性。
在处理大数据时,HBase的性能优化也是一个重要话题。
例如,合理设置region的大小,避免热点问题;
使用合适的数据模型和索引策略,优化查询性能;
使用Compaction控制数据文件的合并,保持数据的整洁。
总之,HBase作为大数据存储的重要工具,其JavaAPI提供了丰富的功能,让开发者能够灵活地操作和管理大数据。
通过深入学习和实践,我们可以充分利用HBase的优势,解决大规模数据处理的挑战。
2025/3/22 0:51:17 134.67MB hbase
1
高压传输线的智能检测一直以来都是计算机视觉识别的热点。
本文打破传统的人工检测方式,利用无人机搭载开源硬件Arduino和相机模块采集高压传输线的数据,对采集回来的高压传输线图片用OpenCV和C++进行加载、灰度处理、二值化、边缘检测、直线检测、设计函数等系列处理,最终得到一幅只有传输线边界的直线检测图像,同时过滤掉复杂图背景,从而达到良好的识别效果。
2025/3/11 0:25:31 335KB 传输线检测
1
利用MFC编写的建立windows网络热点共享的源码。
2025/2/23 6:51:50 78KB windows共享 MFC 网络热点 MFC源码
1
CDH性能调优,CDH热点问题分析,安装注意事件
2025/2/5 15:39:53 1.65MB CDH性能调优
1
《雷达信号处理基础》介绍了雷达系统与信号处理的基本理论和方法,主要内容包括:雷达系统导论、雷达信号模型、脉冲雷达信号的采样和量化、雷达波形、多普勒处理、检测基础原理、恒虚警率检测、合成孔径雷达成像技术、波束形成和空-时二维自适应处理导论。
书中包含了大量反映雷达信号处理最新研究成果和当前研究热点的补充内容,提供了大量有助于读者深入的示例。
2025/1/30 3:17:03 42.92MB 雷达
1
深度强化学习是人工智能领域的一个新的研究热点.它以一种通用的形式将深度学习的感知能力与强化学习的决策能力相结合,并能够通过端对端的学习方式实现从原始输入到输出的直接控制.自提出以来,在许多需要感知高维度原始输入数据和决策控制的任务中,深度强化学习方法已经取得了实质性的突破.该文首先阐述了三类主要的深度强化学习方法,包括基于值函数的深度强化学习、基于策略梯度的深度强化学习和基于搜索与监督的深度强化学习;其次对深度强化学习领域的一些前沿研究方向进行了综述,包括分层深度强化学习、多任务迁移深度强化学习、多智能体深度强化学习、基于记忆与推理的深度强化学习等.最后总结了深度强化学习在若干领域的成功应用和未来发展趋势.
1
在脑-机接口研究中,二维光标控制由于易实现、量化可以作为测试新范式和新算法原型的特点,一直是研究的热点。
基于减小使用者的控制难度,实现光标在二维平面内任意位置移动的目标,我们仅使用两类运动想象就实现了光标的二维控制。
通过把分类器的输出概率映射到我们设计的旋转控制坐标系中,实现光标二维移动。
结合最后设计的一种固定5目标的验证实验,邀请4人参与该实验,从他们的控制效果上,可以得到控制策略简单有效的结论。
1
共 161 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡