CMADS数据集运用,大气驱动场的质量一直是影响水文模型模拟结果的重要因素之一,较差的大气驱动场数据通过误差传递,使得水文模型输出结果的不确定性增加。
我国幅员辽阔且地形复杂,而气象观测站点却相对稀缺,现有观测站点已不能满足大尺度水量、能量平衡过程的模拟研究工作。
引入中国陆面同化系统强迫场CLDAS,建立CMADS数据集,以祁连山黑河流域为典型研究区,利用CMADSV1.0版本数据集驱动SWAT模型,并对CFSR及传统气象站驱动SWAT的结果进行对比分析。
通过对黑河流域3个水文控制站(莺落峡,祁连山及扎马什克)径流量进行率定与验证后发现:CMADS+SWAT模式径流输出结果总体优于CFSR+SWAT模式及TWS+SWAT模式的模拟结果,利用CMADS+SWAT模式亦可很好地反映黑河流域各类地表分量(如土壤湿度、融雪等)时空分布特征,表明CMADS数据集较传统气象站驱动大中尺度水文模型拥有更明显的优势,该数据集将为我国地面气象站缺乏区及无站区(如中国西部及我国大部分高寒山区等)的大气-水文耦合研究提供重要的气象数据保障
2025/10/8 18:14:57 1.61MB 数据
1
在matlab中基于卡尔曼滤波的目标跟踪程序
卡尔曼滤波作为一种在多个领域中被视为一种数学方法,在信号处理和预测方面得到了广泛的应用。
特别是在目标跟踪领域,其应用效果尤为突出。
通过在MATLAB环境下开发目标跟踪程序,我们能够更高效地处理动态环境中目标的定位与预测问题。
本文将对这一主题进行深入解析:首先,介绍卡尔曼滤波的基础知识;
其次,探讨其在MATLAB中的实现方式;
最后,详细分析其在目标跟踪领域的具体应用及其实践步骤。
通过系统的学习和实践操作,可以全面掌握卡尔曼滤波器的设计与应用技巧,从而在实际工程中灵活运用这一重要算法。
卡尔曼滤波作为一种线性最小方差估计方法,是由数学家鲁道夫·卡尔曼于1960年首次提出。
它通过融合多源信息,包括观测数据和预测模型,对系统状态进行最优估计。
在目标跟踪过程中,卡尔曼滤波器能够有效结合历史估计结果与当前观测数据,从而更新目标位置的最新认知。
掌握这一技术不仅能提升信号处理能力,还能为复杂的动态系统建模提供有力支持。
卡尔曼滤波在目标跟踪中的应用主要包含以下几个关键步骤:1)状态转移模型的建立;
2)观测模型的设计;
3)预测阶段的操作流程;
4)更新阶段的具体实现方式。
每一环节都需要精确地定义其数学关系,并通过迭代计算逐步优化结果。
理解并熟练运用这些步骤,是掌握卡尔曼滤波器核心原理的关键所在。
压缩包中的内容包含以下几部分:1)新手必看.htm文件:这是一份针对编程初学者的详细指南,提供了程序的基本使用方法、参数配置以及常见问题解答等实用信息;
2)Matlab中文论坛--助努力的人完成毕业设计.url:这是一个指向MATLAB中文论坛的链接,用户可以在该平台找到丰富的学习资源和交流讨论区,以获取更多编程技巧和项目灵感;
3) kalman tracking:这是实际的MATLAB代码文件,包含了卡尔曼滤波目标跟踪算法的具体实现。
通过仔细分析这些代码,可以深入了解算法的工作原理及其实现细节。
为了更好地掌握卡尔曼滤波器的应用技术,建议采取以下学习与实践策略:第一,深入理解卡尔曼滤波的理论基础和数学模型;
第二,系统学习MATLAB编程技能;
第三,深入研究并解析相关的代码实现;
第四,结合实际数据进行仿真实验。
通过循序渐进的学习方式,可以逐步掌握这一技术的核心要点,并将其应用于各种实际场景中。
2025/10/8 10:19:25 615KB matlab 目标跟踪
1
Simulink永磁同步电机仿真模型,包括了电流、转矩、转速。
2025/10/8 10:27:37 72KB 永磁同步电机
1
GPS算法中相对定位的最好书籍,作者葛茂荣魏子卿编写完成,价值很大
2025/10/7 15:28:20 5.43MB gps 相对定位 模型
1
帕绍大学硕士论文主题:域自适应本文讨论了一种通用的领域自适应模型技术的发展,这将有助于解决各种计算机视觉任务。
该模型在流行的视觉域数据集上进行图像分类任务训练,并且与其他可用的域适应方法相比,该模型的性能得到了评估。
“基于幅度的权重修剪”技术用于执行目标特征提取器优化。
有关代码的说明:models.py模块定义了源模型和目标模型。
Xception网络和顶层config.py模块定义了各种参数,例如设置路径,实验数据集组合ID等。
将来可能会添加其他配置loss.py定义了其他损失方法。
preprocessing.py模块使用各种数据集组合(包括数据扩充)定义数据预处理管道。
train_test.py是一个帮助程序模块,它定义了培训和评估方法。
evals_helper.py是一个帮助程序模块,它详细定义了评估方法。
utlis.py定义了各种绘图,辅助方法和
2025/10/7 10:41:06 2.61MB JupyterNotebook
1
     为研究机器故障和维修活动对制造过程性能的影响,提出一种基于广义随机Petri网的制造过程建模与性能分析方法。
分析了随机机器故障特征;
定义了两种故障发现模式和两种中断作业处理策略;
给出具有随机机器故障的制造过程的不同模型方法;
通过对模型结构特征的分析,证明了其有效性。
针对不同策略和参数设置进行了性能仿真。
分别以平均产量和平均过程流时间等性能指标,分析了单个工作站的性能;
采用平均产量,分析了具有两个工作站的流水线的性能。
仿真结果表明,故障率、平均维修时间、缓存数量配置、维修工人数量、故障发现模式和中断作业处理策略是影响具有随机机器故障的制造过程性能的主要因素。
1
基于双因子抗差权的KALMAN滤波模型研究,里面有具体文章供参考,谢谢原作者!
2025/10/5 22:35:53 122KB 滤波
1
PPT是刘杰老师对于基于模型设计过程的简明讲解,结合刘老师基于模型设计DSP或MCU书籍阅读PPT收获更大
2025/10/5 8:09:14 2.83MB 基于模型设计 MATLAB simulink 嵌入式
1
数据库文件可以直接导入,数据库配置文件index.php,请在导入前建立好数据库文件夹salesystem。
本程序是梦想瞬智网络科技采用MVC模式、ACL权限控制。
是一个开源的PHPMYSQL公司内部销售管理系统.基本原理就是控制器、模型、视图,强烈推荐新手学习。
程序在美工方面实在是很难看,可是请见谅,没有太多精力去弄,功能都完成了。
如用于商业,造成任何损失,请自行负责!功能特点(更多
2025/10/4 22:05:20 2.51MB php源码
1
股票估值模型(dcf估值、ddm估值、apv估值、ae估值、eva估值)
2025/10/4 14:22:57 449KB 股票估值模型
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡