MLDemos0.4.7bforWindows:超直观的可视化机器学习工具,可帮助我们理解不同的机器学习方法(VIA:http://bickson.blogspot.com/2012/07/amazing-ml-visualization-software.html)
2026/1/15 4:03:08 27.41MB 机器学习 可视化 MLDemos
1
在matlab开发环境下,用贝叶斯网络实现神经网络算法的实现步骤简单的阐明了神经网络机器学习的原理
2026/1/9 10:40:58 8KB matlab贝叶斯 神经网络算法
1
码农转机器学习,logisticregression推导过程,有启发,0基础可看懂,用颜色标注的很清楚(免费公开版)
1
DBSCAN,全称为Density-BasedSpatialClusteringofApplicationswithNoise,是一种在数据挖掘和机器学习领域广泛应用的聚类算法。
它与传统的K-Means、层次聚类等方法不同,DBSCAN不依赖于预先设定的簇数量,而是通过度量数据点的密度来自动发现具有任意形状的聚类。
在MATLAB中实现DBSCAN可以帮助我们分析复杂的数据集,识别出其中的模式和结构。
DBSCAN算法的基本思想是将高密度区域视为聚类,低密度区域视为噪声或边界。
它主要由两个关键参数决定:ε(epsilon)半径和minPts(最小邻域点数)。
ε定义了数据点周围的邻域范围,而minPts则指定了一个点成为聚类中心所需的邻域内最少点的数量。
如果一个点在其ε邻域内有至少minPts个点(包括自身),那么这个点被标记为“核心点”。
核心点可以连接形成聚类,只要这些点之间的路径上存在其他核心点,且路径上的所有点都在ε半径内。
在MATLAB中实现DBSCAN,通常会涉及以下步骤:1.**数据预处理**:我们需要加载数据,可能需要进行数据清洗、归一化等操作,以确保算法的有效运行。
2.**设置参数**:根据数据集的特点,选择合适的ε和minPts值。
这通常需要实验调整,找到既能有效区分聚类又能排除噪声的最佳参数。
3.**邻域搜索**:使用MATLAB的邻域搜索工具,如kd树(kdtree)或球树(balltree),快速找出每个点的ε邻域内的点。
4.**核心点、边界点和噪声点的识别**:遍历所有数据点,依据ε和minPts判断每个点的类型。
5.**聚类生长**:从每个核心点开始,将与其相连的核心点加入同一聚类,直到找不到新的相连点为止。
6.**结果评估**:使用合适的评价指标,如轮廓系数,评估聚类的质量。
在MATLAB中,可以使用`clusterdata`函数配合`dbscan`选项来实现DBSCAN,或者直接使用第三方库如`mlpack`或自定义代码来实现更灵活的控制。
例如:```matlab%假设X是数据矩阵tree=pdist2(X,X);%计算所有点之间的距离[~,~,idx]=knnsearch(tree,X,'K',minPts+1);%获取每个点的minPts近邻density=sum(idx>1,2);%计算每个点的密度%执行DBSCANcc=clusterdata(X,'Method','dbscan','Eps',epsilon,'Minpts',minPts);%输出聚类结果disp(cc);```DBSCAN的优势在于它可以发现不规则形状的聚类,并对异常值具有良好的鲁棒性。
然而,它的缺点是参数选择较困难,且对于高维数据性能可能下降。
因此,在实际应用中,我们需要结合具体的数据集和需求,适当调整参数,以获得最佳的聚类效果。
同时,理解DBSCAN的原理并掌握其MATLAB实现,对于数据科学家来说是非常重要的技能。
2026/1/4 0:49:14 121KB
1
工业大数据即工业数据的总和,其来源主要包括企业信息化数据、工业物联网数据、“跨界”数据等,它是工业互联网的核心,是智能制造的关键。
工业大数据分析作为工业大数据的核心技术之一,是工业智能化发展的重要基础和关键支撑。
本文将结合作者在工业领域多年的实践应用经验,力图对工业大数据分析技术的应用思路、方法和流程进行总结,旨在为企业开展大数据分析工作提供技术和业务上的借鉴。
在本文中我们将一起研讨和思考:工业大数据分析的特殊性;
工业大数据分析的困境及难点;
工业大数据分析的基本框架;
工业大数据分析该如何开展?工业大数据分析技术在实践应用中的思路与方法工业大数据分析是利用统计学分析技术、机器学习技术、信号处理技
1
主要用于机器学习,或者深度学习,作为训练样本使用的,便宜分享给大家
2026/1/1 10:58:44 58.92MB 人脸样本库
1
机器学习神经网络选择带答案,整理机器学习神经网络部分习题,
2025/12/29 18:45:40 36KB 神经网络 深度学习 习题
1
谷歌机器学习速成课程(招式)+机器学习术语表(口诀)+机器学习规则(心得)+机器学习中的常识性问题(内功)。
该资源适用于机器学习、深度学习以及TensorFlow研究人员参考
2025/12/23 13:41:32 23.06MB ml
1
PRML中文版高清文字版带书签目录.pdf个人收集电子书,仅用学习使用,不可用于商业用途,如有版权问题,请联系删除!
2025/12/11 12:47:06 11.66MB PRML中文版
1
包含了量化分析最新的技术指导文献,用机器学习的方法去智能选股以及分析
2025/12/7 4:20:43 42.49MB 量化资源
1
共 694 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡