EM算法也就是期望最大化算法,是一种无指导的学习算法。
ThislittlesoftwareistherealizationofEMalgorithmintheapplicationoftossiingthecoin,whichisdescribedinthepaperofMichaelCollinsin1997.下载包中包含:源代码、可执行程序、关于EM算法的paper
2025/4/26 4:23:40 2.05MB 机器学习 EM算法 期望最大化
1
基于隐马尔可夫随机场和期望最大化的图像分割方法,属于统计机器学习范畴,分割效果较好。
2024/10/16 12:32:02 814KB 随机场 图像分割
1
用期望最大化(EM算法)去实现高斯混合模型(GMM),使用matlab程序
2024/2/21 10:45:38 2KB EM GMM matlab
1
结合图像处理技术和概率数据关联(PDA)运动模型,我们开发了一种新颖的框架来解决噪声背景不佳的非机电系统的对象跟踪问题。
新模型具有两个优点:(1)通过集成统计运动模型,可以比现有模型更精确地模拟许多非机电系统中的对象运动。
(2)由于采用了全局搜索的最佳模型参数,与依赖连续帧区分的其他方法相比,该模型更好地在高噪声环境中跟踪对象。
我们在提出的模型中推导了期望最大化(EM)算法。
合成数据和图像数据集都证明了其有用性。
引入了模型稳定性以量化模型的实用性。
2023/8/17 17:44:48 1.47MB Object tracking; Motion model;
1
介绍EM算法,EM算法的底子思绪,EM算法源代码
2023/4/23 2:43:41 4KB EM算法
1
数据挖掘算法算法目录18大DM算法包名 目录名 算法名AssociationAnalysis DataMining_Apriori Apriori-关联规则挖掘算法AssociationAnalysis DataMining_FPTree FPTree-频繁模式树算法BaggingAndBoosting DataMining_AdaBoost AdaBoost-装袋提升算法Classification DataMining_CART CART-分类回归树算法Classification DataMining_ID3 ID3-决策树分类算法Classification DataMining_KNN KNN-k最近邻算法工具类Classification DataMining_NaiveBayes NaiveBayes-朴素贝叶斯算法Clustering DataMining_BIRCH BIRCH-层次聚类算法Clustering DataMining_KMeans KMeans-K均值算法GraphMining DataMining_GSpan GSpan-频繁子图挖掘算法IntegratedMining DataMining_CBA CBA-基于关联规则的分类算法LinkMining DataMining_HITS HITS-链接分析算法LinkMining DataMining_PageRank PageRank-网页重要性/排名算法RoughSets DataMining_RoughSets RoughSets-粗糙集属性约简算法SequentialPatterns DataMining_GSP GSP-序列模式分析算法SequentialPatterns DataMining_PrefixSpan PrefixSpan-序列模式分析算法StatisticalLearning DataMining_EM EM-期望最大化算法StatisticalLearning DataMining_SVM SVM-支持向量机算法其他经典DM算法包名 目录名 算法名Others DataMining_ACO ACO-蚁群算法Others DataMining_BayesNetwork BayesNetwork-贝叶斯网络算法Others DataMining_CABDDCC CABDDCC-基于连通图的分裂聚类算法Others DataMining_Chameleon Chameleon-两阶段合并聚类算法Others DataMining_DBSCAN DBSCAN-基于密度的聚类算法Others DataMining_GA GA-遗传算法Others DataMining_GA_Maze GA_Maze-遗传算法在走迷宫游戏中的应用算法Others DataMining_KDTree KDTree-k维空间关键数据检索算法工具类Others DataMining_MSApriori MSApriori-基于多支持度的Apriori算法Others DataMining_RandomForest RandomForest-随机森林算法Others DataMining_TAN TAN-树型朴素贝叶斯算法Others DataMining_Viterbi Viterbi-维特比算法18大经典DM算法18大数据挖掘的经典算法以及代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面,后面都是相应算法的博文链接,希望能够协助大家学。
目前追加了其他的一些经典的DM算法,在others的包中涉及聚类,分类,图算法,搜索算等等,没有具体分类。
C4.5C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。
ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。
详细介绍链接CARTCART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法,详细介绍链接KNNK最近邻算法。
给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。
近的点的权重大点,远的点自然就小点。
详细介绍链接NaiveBayes朴素贝叶斯算法。
朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导
2023/3/5 1:58:33 220KB 数据挖掘 18大 算法 DM
1
本程序为matlab程序。
em算法,指的是最大期望算法(ExpectationMaximizationAlgorithm,又译期望最大化算法),是一种迭代算法,在统计学中被用于寻觅,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。
2018/8/19 23:04:08 2KB matlab EM
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡