一个最小风险贝叶斯决策的程序,很不错,推荐。
2024/6/13 17:27:21 4KB MATLAB代码 贝叶斯决策 最小风险
1
 信息增益是文本分类中一种有效的特征项选择方法,针对垃圾邮件过滤中的特征项选择问题,提出了一种改进的信息增益方法提取特征词,并采用了最小风险贝叶斯的决策方法,最后在英文语料库上进行实验,实验结果表明改进后的方法降低了过滤器对合法邮件的误判。
1
使用Matlab实现,包括一维特征最小错误率bayes分类器;
二维特征最小错误率bayes分类器;
二维特征最小风险bayes分类器以及使用的数据集合。
2023/9/30 23:21:55 4KB bayes
1
基于最小风险贝叶斯决策对细胞异常与否的分析,.m文件,代码框架明确,备注清晰,有利于学习,可直接更改数据及参数用于其他方面的分析。
2023/6/6 15:15:43 1KB 贝叶斯 最小风险
1
模式识别实例:包括最小错误率、最小风险贝叶斯决策matlab代码,正文清楚丰富。
2023/3/10 11:35:46 87KB 模式识别 贝叶斯 matlab
1
模式识别中贝叶斯算法判别身高体重matlab实现1)应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,调查测试错误情况。
在分类器设计时可以调查采用不同先验概率(如0.5对0.5,0.75对0.25,0.9对0.1等)进行实验,调查对决策规则和错误率的影响。
2)应用两个特征进行实验:同时采用身高和体重数据作为特征,分别假设二者相关或不相关,在正态分布假设下估计概率密度,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,调查训练/测试错误情况。
比较相关假设和不相关假设下结果的差异。
在分类器设计时可以调查采用不同先验概率(如0.5vs.0.5,0.75vs.0.25,0.9vs.0.1等)进行实验,调查对决策和错误率的影响。
3)自行给出一个决策表,采用最小风险的Bayes决策重复上面的某个或全部实验。
2016/6/25 22:06:17 669KB 模式识  matla
1
中国科学技术大学汪增福模式识别课程课件。
第一章为绪论。
第二章引见统计模式识别中的几何方法,着重引见特征空间的概念和相关分类器的设计方法。
第三章引见统计模式识别中的概率方法,着重引见最小错误概率分类器、最小风险分类器、纽曼皮尔逊分类器和最小最大分类器以及概率密度函数的参数估计和非参数估计等。
第四章讨论典型分类器错误概率的计算问题。
第五章讨论无监督情况下的模式识别问题,着重引见几种典型的聚类算法:基于分裂的聚类方法、基于合并的聚类方法、动态聚类方法、基于核函数的聚类方法和近邻函数值聚类方法等。
第六章讨论结构模式识别问题,给出几种典型的文法规则和与之相关联的识别装置,包括有限状态自动机、下推自动机和图灵机等。
最后,在第七章对全书进行总结。
2021/11/8 11:51:08 25.28MB 中科大 汪增福 模式识别课件
1
利用100个男女训练集样本,使用贝叶斯分类器判别男女。
1.采用最大似然法和贝叶斯估计的方法获得密度函数,设定不同的先验概率,观察判别结果正确率。
2.分别在男女相关不相关的情况下分析结果正确率。
3.设定不同的风险,采用最小风险的Bayes决策反复上面实验。
2018/9/4 4:21:32 702KB 代码 模式识 贝叶斯估 最小风险
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡