用该文件可以实现以下功能:用labelme工具打1张图片的标签,生成1.png和1.json在终端中运行命令pythona.py生成20张数据增强后的图片及其对应的json文件,包括翻转,加噪,模糊,加减曝光等图片在终端中运行pythonlabelme2COCO.py生成COCO格式数据集,可以进行mask-rcnn和faster-rcnn等的输入数据集
2025/1/22 6:53:58 684KB 数据增强 lableme数据 标注 机器视觉
1
数据增强技术,采用开源框架keras代码库进行数据扩增,通过平移、旋转、裁剪、等方法对原始图像进行操作,得到更多的类似的目标图像。
2024/10/16 9:39:16 984B 数据增强、旋转、裁剪
1
HypeLCNN概述该存储库包含论文“具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架”的论文源代码(正在审查中)使用Tensorflow1.x开发(在1.10至1.15版上测试)。
该存储库包括一套完整的套件,用于基于神经网络的高光谱和激光雷达分类。
主要特点:支持超参数估计基于插件的神经网络实现(通过NNModel接口)基于插件的数据集集成(通过DataLoader接口)培训的数据有效实现(基于内存的有效/基于内存/记录的)能够在经典机器学习方法中使用数据集集成神经网络的培训,分类和指标集成胶囊网络和神经网络的示例实现基于CPU/GPU/TPU(进行中)的培训基于GAN的数据增强器集成交叉折叠验证支持源代码可用于在训练大数据集中应用张量流,集成指标,合并两个不同的神经网络以进行数据增强的最佳实践注意:数据集文件太
2024/10/9 21:46:46 128KB deep-neural-networks tensorflow fusion lidar
1
不同方向成对图像拼接(保持车ID不变),可作一般用途,可作为数据增强数据集,生成不同角度的图像,利用GAN网络
2024/9/29 18:03:24 104.75MB deep learnin dataset
1
乳腺癌病理图像的自动分类具有重要的临床应用价值。
基于人工提取特征的分类算法,存在需要专业领域知识、耗时费力、提取高质量特征困难等问题。
为此,采用一种改进的深度卷积神经网络模型,实现了乳腺癌病理图像的自动分类;同时,利用数据增强和迁移学习方法,有效避免了深度学习模型受样本量限制时易出现的过拟合问题。
实验结果表明,该方法的识别率可达到91%,且具有较好的鲁棒性和泛化性
2024/8/3 5:11:41 632KB 深度学习 图像识别
1
利用CNN处理CIFAR-10的测试精度没达到0.9,所以来试试Rsenet~通过数据增强等处理方式,利用20层的Resnet对其进行测试,精度达到0.9139.
2024/2/12 1:58:24 884KB 深度学习 keras resnet Cifar10
1
2020年2月19日,欧委会发布《欧洲数据战略》报告(AEuropeanStrategyfordata),概述了欧盟未来五年实现数据经济所需的政策措施和投资策略。
该战略将在尊重欧洲“以人为本”的核心价值观基础上,通过建立跨部门治理框架、加强数据基础设施投资、提升个体数据权利和技能、打造公共欧洲数据空间等措施,将欧洲打造成全球最具吸引力、最安全和最具活力的数据敏捷经济体(data-agileeconomy)。
1.面向数据访问和使用的跨部门治理框架2.使能作用:投资数据,增强欧洲数据托管、处理和应用能力3.能力:个人赋权,增强技能培养和中小企业投资4.针对战略领域和公共领域建设通用欧洲数据空间
2023/12/11 4:55:49 1.12MB 大数据 欧洲
1
深度学习脑部肿瘤图像分割代码,python包括图像预处理数据增强,数据生成,网络训练,测试结果
2023/10/8 14:48:43 43KB 深度学习 脑部 肿瘤分割
1
一步步教你如何搭建机器翻译系统,包括:1.机器翻译现状41.1什么是机器翻译?41.2相关论文71.3相关会议81.4相关工具82.NMT系统搭建指导92.1获取数据92.2数据预处理102.3模型训练122.4模型的解码及bleu计算133.系统的优化153.1模型的ensemble153.2定制化领域微调153.3迁移学习154.翻译引擎的部署164.1翻译系统概述164.2基于Tensor2tensor的引擎部署164.3简单系统搭建174.4多个模型共同部署的方案185.机器翻译进阶195.1爬虫技术195.2数据清洗195.3数据增强205.4翻译质量评估216.常用框架概述226.1Tensor2tensor226.2Nematus296.3Marian296.4其他框架307.其他307.1Bleu原理307.2BPE原理30
2023/9/26 1:34:17 2.05MB 机器翻译 人工智能 t2t
1
卷积神经网络-Codealong介绍在此代码中,我们将重新研究以前的圣诞老人图像分类示例。
为此,我们将审查从嵌套目录结构中加载数据集并构建基线模型。
从那里,我们将构建一个CNN并演示其在图像识别任务上的改进功能。
建议您运行单元格,以便进一步探索变量并调查代码片段本身。
但是,请注意,某些细胞(尤其是稍后训练的细胞)可能需要几分钟才能运行。
(在Macbookpro上,整个笔记本电脑大约需要15分钟才能运行。
)目标你将能够:使用图像数据生成器从分层文件结构加载图像解释为什么训练神经网络时可能会增加图像数据在训练神经网络之前将数据增强应用于图像文件使用Keras构建CNN正确存储图像分析图像数据时,文件管理很重要。
我们将再次使用圣诞老人图像,但是这次将它们存储在两个文件夹中:santa和not_santa。
我们现在想使用train,validation
2023/3/19 7:39:44 344.12MB JupyterNotebook
1
共 13 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡