《随机过程教程讲义》是一本系统介绍随机过程理论及其应用的教学资料,涵盖基础概念、模型构建及实际案例分析,适用于科研与教学。


### 随机过程讲义知识点解析

#### 马尔可夫链的基本概念与性质

马尔可夫链是一种重要的随机过程模型,其特点在于系统在任一时刻的状态仅依赖于前一个状态而与其他历史无关。
这种特性使得马尔可夫链被广泛应用于统计学、计算机科学、物理学和工程学等领域。


**一步转移概率矩阵与状态关系**

讲义中通过具体例子展示了如何构建一步转移概率矩阵,并分析了各个状态之间的相互联系。
例如,对于一个包含{0,1,2,3}的状态集的马尔可夫链,其一步转移概率矩阵如下所示:

[
P = begin{pmatrix}
1/2 & 1/2 & 0 & 0 \1/4 & 1/4 & 1/4 & 1/4 \0 & 0 & 0 & 1
end{pmatrix}
]

通过分析矩阵中的元素,可以得知状态0和状态1之间存在互达性(即两者间可相互转换),而从状态2可以到达其他所有状态,但一旦进入状态3,则永远停留在那里。
因此,状态3是一个吸收态。


#### 遍历性与平稳分布

遍历性是马尔可夫链的重要性质之一,表示在长时间运行后每个状态的访问频率趋于稳定值,显示出系统的长期行为模式。
而平稳分布则描述了这一稳定的概率分布情况。


讲义中讨论了两种不同的一步转移矩阵,并分析它们是否具有遍历性。
第一种情况下该马尔可夫链具备遍历性并计算出了其平稳分布(pi),满足条件(pi P = pi);
而在第二种情形下,由于n步转移矩阵显示随时间变化而不收敛的特性,因此不具备遍历性。


#### 泊松过程的定义等价性

泊松过程是一种关键随机模型,在描述独立且发生率恒定事件的时间间隔方面具有独特性质。
讲义中提出了两种不同的泊松过程定义,并通过Kolmogorov微分方程验证了这两种定义的一致性。


具体而言,通过对短时间内的行为分析导出了泊松过程的微分方程,该推导基于两个基本特性:事件的发生是独立且在短时间内发生率恒定。
这不仅证明了两种定义之间的等价关系,也加深了对泊松过程内在机制的理解。


这份随机过程讲义深入浅出地讲解了马尔可夫链和泊松过程的核心概念及其应用,并通过实例分析帮助读者理解这些模型的数学基础与实际意义,在学术研究及工业应用中都具有重要价值。
2025/9/18 21:33:05 1.41MB 讲义基础,提高,升华
1
NS方程推导过程,非常实用哦。



NS方程推导过程,非常实用哦
2025/9/4 1:35:12 2.21MB NS方程
1
该资源详细介绍了如何采用RAS法计算推导投入产出表,以及具体案例
2025/8/28 5:24:29 1.53MB RAS 投入产出
1
本文分析了在光学和数字混合处理X光层析术中,记录正弦图的要求,提出了修正正弦图数据的方法,研究了胶片的颗粒噪声对重建像的影响,并推导出重建像的信噪比公式.最后,给出了重建像的实验结果.
2025/8/27 15:29:21 4.59MB 论文
1
基于非Kolmogorov谱模型,利用广义惠更斯-菲涅耳原理,推导出了高斯谢尔模型(GSM)光束在非Kolmogonov大气湍流中光谱的解析表达式,并用其研究了非Kolmogorov大气湍流对GSM光束光谱变化的影响。
结果表明,GSM光束在非Kolmogorov大气湍流中传输时有光谱移动(蓝移和红移)和光谱跃变发生。
光谱跃变的发生与离轴距离r、广义指数参量[α]、广义结构常量[C2n]、湍流内尺度l0、湍流外尺度L0和传输距离z有关。
随着广义指数参量[α]的增大、湍流内尺度l0的增大及广义结构常量[C2n]的减小,光谱跃变量[Δ]减小,光谱跃变临界位置zc增大。
该研究工作可为自由空间光通信等实际应用提供理论模型和计算依据。
1
本书系统介绍了信号检测和估计的主要理论,公式推导清晰,章节结构合理
2025/8/25 15:08:26 128.82MB 检测与估计
1
个人关于turbo码译码过程的详细推导,以及turbo编码过程的简介。
个人关于turbo码译码过程的详细推导,以及turbo编码过程的简介。
2025/8/21 17:58:52 685KB Communicatio Turbo Coding
1
加密算法在信息技术领域中起着至关重要的作用,用于保护数据的安全性和隐私性。
SHA(SecureHashAlgorithm)是一种广泛使用的散列函数,它将任意长度的数据转换为固定长度的摘要值。
SHA512是SHA家族中的一员,提供更强大的安全性能,尤其适合大数据量的处理。
本文将深入探讨SHA512加密算法的原理、C++实现以及其在实际应用中的重要性。
SHA512算法基于密码学中的消息摘要思想,通过一系列复杂的数学运算(如位操作、异或、循环左移等),将输入数据转化为一个512位的二进制数字,通常以16进制形式表示,即64个字符。
这个过程是不可逆的,意味着无法从摘要值推导出原始数据,因此被广泛应用于数据完整性验证和密码存储。
在C++中实现SHA512算法,首先需要理解其基本步骤:1.**初始化**:设置一组初始哈希值(也称为中间结果)。
2.**预处理**:在输入数据前添加特殊位和填充,确保数据长度是512位的倍数。
3.**主循环**:将处理后的数据分成512位块,对每个块进行多次迭代计算,每次迭代包括四个步骤:扩展、混合、压缩和更新中间结果。
4.**结束**:将最后一个中间结果转换为16进制字符串,即为SHA512的摘要值。
C++代码实现时,可以使用位操作、数组和循环来完成这些计算。
为了简化,可以使用`#include`中的`uint64_t`类型表示64位整数,因为SHA512处理的是64位的数据块。
同时,可以利用`#include`中的`memcpy`和`memset`函数来处理内存操作。
此外,`#include`和`#include`库可用于将二进制数据转换成16进制字符串。
以下是一个简化的C++SHA512实现框架:```cpp#include#include#include#include#include//定义常量和初始化哈希值conststd::arraykInitialHashValues{...};std::arrayhashes=kInitialHashValues;//主循环函数voidProcessBlock(constuint8_t*data){//扩展、混合、压缩和更新中间结果}//输入数据的处理voidPreprocess(conststd::string&input){//添加填充和特殊位}//将摘要转换为16进制字符串std::stringDigestToHex(){//转换并返回16进制字符串}//使用示例std::stringmessage="Hello,World!";Preprocess(message);constuint8_t*data=reinterpret_cast(message.c_str());size_tdataSize=message.size();while(dataSize>0){if(dataSize>=128){ProcessBlock(data);dataSize-=128;data+=128;}else{//处理剩余数据}}std::stringresult=DigestToHex();```这个框架只是一个起点,实际的SHA512实现需要填充完整的扩展、混合和压缩步骤,以及处理边界条件。
此外,为了提高效率,可能还需要使用SIMD(SingleInstructionMultipleData)指令集或其他优化技术。
SHA512算法在多种场景下具有广泛的应用,如:-**文件校验**:通过计算文件的SHA512摘要,可以验证文件在传输或存储过程中是否被篡改。
-**密码存储**:在存储用户密码时,不应直接保存明文,而是保存SHA512加密后的哈希值。
当用户输入密码时,同样计算其SHA512值并与存储的哈希值比较,不匹配则表明密码错误。
-**数字签名**:在公钥加密体系中,SHA512可以与非对称加密算法结合,生成数字签名,确保数据的完整性和发送者的身份验证。
了解并掌握SHA512加密算法及其C++实现,对于信息安全专业人员来说至关重要,它不仅有助于提升系统的安全性,也有助于应对不断发展的网络安全威胁。
通过深入学习和实践,我们可以更好地理解和利用这一强大的工具。
2025/8/13 8:50:17 2.14MB 加密算法
1
介绍了一种应用于光纤时频传递秒脉冲信号(1PPS)调制的马赫-曾德尔调制器(MZM)偏置点反馈控制系统。
本系统将电光调制器的偏置点设置在传输曲线的最小值点(Null)和正斜率正交点(Quad+)之间的线性区域,利用光电二极管(PIN)探测输出1PPS信号的低电平电压的波动来检测偏置点的漂移。
对测量到的电压信号进行数字处理后通过控制偏置点反馈系统来稳定调制器的偏置点。
对反馈控制理论进行了原理推导,并与基于微扰理论的商用偏置点稳定系统进行了对比实验。
实验证明该系统可以避免微扰信号对1PPS传输稳定性的影响,传递性能优于商用偏置点稳定系统。
实验结果表明,1PPS传递时延波动的峰峰值为174ps,均方根值(RMS)为18ps,在平均时间为104s时,1PPS的时间阿伦方差(TDEV)下降到1.7ps。
1
共 305 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡