本文利用德国足球甲级联赛2014-2015赛季共306场比赛的积分、排名、主客场情况数据,首先进行多分类logistic模型,预测比赛结果。
再建立有序多分类logistic回归模型进行比赛结果的预测。
并将预测结果进行对比分析,发现有序多分类logistic模型预测结果优于多分类logistic模型。
另外,本文将每场比赛的比分差作为因变量,胜平负赔率作为自变量,建立了多元回归模型,从赔率的角度预测比赛结果。
结果表明,对于一场比赛,当多分类logistic模型预测结果和赔率多元回归模型预测结果相吻合的时候,预测准确率将大大提高。
2023/10/13 22:10:31 1.79MB 回归分析
1
基于BP网络的彩票预测系统的研究.kdh双色球彩票分析技术及其应用研究.nh双色球的数理分析及其应用.cajBP算法的模仿程序.caj预测源代码(练习用,不很准确)
2019/10/24 20:55:38 3.39MB 彩票预测 BP网络
1
优点——RBF神经网络有很强的非线性拟合能力,可映射任意复杂的非线性关系,而且学习规则简单,便于计算机实现。
具有很强的鲁棒性、记忆能力、非线性映射能力以及强大的自学习能力,因此在彩票等非线性大数据分析预测方面,有着很大的应用市场。
具有局部逼近的优点RBF神经网络是一种功能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。
只要在MATLAB(R2014b)平台上,通过运行径向基神经网络“RBF_SSQ”就可以快速预测。
预测系统推荐两注(参数可修改),单注可每号+-1,最多可12个号复试;
也可直接单注投注。
单注中奖率一般在2个以上,复试一般在4-6个红球。
预测可靠性远远高于网络彩票预测机构的水准。
2022/10/9 15:27:37 184KB 彩票预测
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡