《数字图像处理——应用篇》是由谷口庆治编著的一本深入探讨图像处理技术的专业书籍,这本书在图像处理领域具有很高的权威性。
全书完整PDF版本是唯一可获取的全面资源,对于学习和研究图像处理技术的读者来说,无疑是一份宝贵的资料。
图像处理是计算机科学中的一个重要分支,它涉及了将模拟图像转换为数字形式,以及对数字图像进行各种操作以改善质量或提取有用信息。
在《数字图像处理——应用篇》中,作者谷口庆治详细阐述了这一领域的关键概念和技术,包括图像获取、颜色模型、图像增强、图像复原、图像分割、特征提取以及模式识别等核心主题。
1.**图像获取**:这部分介绍了图像传感器的工作原理,如CCD和CMOS,以及扫描仪和相机的成像过程。
同时,还涵盖了像素的概念、采样理论和量化过程。
2.**颜色模型**:书中详细讨论了RGB、CMYK、HSV、YCbCr等常见颜色模型,以及它们在不同应用场景下的选择和转换方法。
3.**图像增强**:通过滤波器、直方图均衡化等手段改善图像的视觉效果,提升图像质量,这部分包括线性和非线性滤波、对比度增强等技术。
4.**图像复原**:针对图像退化问题,如噪声、模糊等,提出了一系列恢复技术,如Wiener滤波、反卷积等。
5.**图像分割**:这是图像分析的关键步骤,包括阈值分割、区域生长、边缘检测等方法,用于将图像划分为有意义的部分。
6.**特征提取**:为了识别和理解图像,需要从图像中提取有意义的特征,如角点、边缘、纹理和形状,这些特征可用于后续的模式识别和对象识别。
7.**模式识别**:利用机器学习算法,如支持向量机、神经网络、决策树等,对图像中的模式进行分类和识别,是图像处理领域的高阶应用,广泛应用于OCR文字识别、人脸识别、医学影像分析等领域。
8.**OCR文字识别**:光学字符识别技术是模式识别的一个实例,通过识别图像中的文字并转化为可编辑文本,该技术在文档自动化处理、图书数字化等方面有着广泛的应用。
压缩包中的文件名表明资源分为了三个部分:`数字图像处理——应用篇.part1.rar`、`数字图像处理——应用篇.part2.rar`和`数字图像处理——应用篇.part3.rar`。
通常,这种分卷压缩格式是为了便于大文件的传输和存储,用户需要下载所有部分并使用合适的解压工具(如WinRAR或7-Zip)合并解压,才能获得完整的PDF文件。
《数字图像处理——应用篇》是一本涵盖广泛、深度适中的教材,适合计算机视觉、图像处理、模式识别等相关领域的学生和研究人员。
通过学习本书,读者不仅可以掌握基本的图像处理技术,还能了解其在实际应用中的策略和方法,为进入这个领域的深入研究打下坚实基础。
1
包括以下方面:1.新建一幅图像,或者打开、保存、关闭和退出等功能。
2.对图像进行复制、粘贴、剪切、全选、取消选择和翻转。
其中翻转包括水平翻转和垂直翻转。
3.过滤图像,包括锐化、浮雕、腐蚀、风化。
4对图像进行滤波处理:包括最小值滤波处理、最大值滤波处理和中值处理。
5.对彩色图像进行变换:包括彩色转灰度、彩色转黑白、平滑处理、霓红处理。
6.软化图像,包括红色、绿色、橙色;
硬化图像,包括红色、绿色、蓝色。
7.对图像进行卷积处理,包括水平增强、垂直增强和双向增强。
8.对图像进行边缘探测,例如右下边缘抽出,拉普拉斯(8邻域)。
9.给图像进行对比度增强,进行FFT分析,以及对两幅图像进行合成。
工具栏中的功能主要体现在工具中,正如平时画图工具的工具一样,可以选择一定的区域,放大图像、画圆、画方,输入文字、剪切一定的区域,简单的渐变等。
2025/6/14 3:05:51 970KB 图像处理 photoshop
1
IDL使用界面编辑实现界面的简单可视化,包括打开(JPEG、Bmp、tiff等格式)、保存、退出、KL、图像增强(罗伯特、索伯尔变换)、边缘提取、直方图均衡化、对比度增强、波段运算等功能
2024/12/20 22:48:36 3KB IDL 遥感影像
1
数字图像处理是研究如何通过计算机技术处理和分析图像的学科,主要应用于图像增强、恢复、分割、特征提取和识别等任务。
数字图像处理的第三版由RafaelC.Gonzalez和RichardE.Woods编写,二人来自田纳西大学和MedDataInteractive公司。
这本书对数字图像处理领域进行了全面的介绍,涵盖了数字图像处理的历史背景、基本概念、技术和算法。
冈萨雷斯的这本书被认为是该领域的重要参考资料。
数字图像处理可以应用于医疗成像、遥感、安全监控、图像压缩、机器视觉等多个领域。
例如,在医疗成像中,数字图像处理可以帮助医生更清晰地观察患者身体组织的结构,从而提高诊断的准确性;
在遥感领域,通过处理和分析遥感图像可以获取地球表面的信息,用于天气预报、地理信息系统的建立等。
数字图像处理涉及的算法和工具主要包括图像的采集、处理、分析和理解等步骤。
图像采集是使用摄像头、扫描仪等设备将图像转换为计算机可以处理的数据形式;
图像处理通常包括图像的预处理(如去噪、对比度增强)、图像变换(如傅里叶变换、小波变换)和图像恢复等;
图像分析主要涉及到图像分割、特征提取、模式识别等内容;
图像理解则试图使计算机能够解释图像内容,达到类似于人类理解图像的水平。
数字图像处理的起源可以追溯到20世纪50年代末60年代初,当时人们开始使用计算机技术对图像进行处理。
早期的数字图像处理主要用于空间探索、卫星图像处理等领域,随着计算机技术的发展和图像处理理论的完善,数字图像处理逐渐扩展到生物医学、工业、安全等其他领域。
数字图像处理的一个重要分支是数字视频处理,其关注如何处理连续的图像序列,以实现视频压缩、视频增强、运动分析等功能。
视频处理技术在高清电视、网络视频、电影后期制作等行业有着广泛的应用。
数字图像处理是一个不断发展的领域,随着人工智能技术的发展,基于深度学习的图像处理技术成为当前的研究热点。
深度学习模型,尤其是卷积神经网络(CNN)在图像识别、分类、目标检测和图像分割等方面显示出了巨大的潜力。
总结来说,数字图像处理是通过计算机技术来处理图像数据,使之更适合人眼或机器分析的一门技术。
随着技术的进步和应用的拓展,它在多个行业中发挥着越来越重要的作用。
冈萨雷斯的《数字图像处理》作为该领域的经典教材,为学习和研究这一领域的专业人士提供了宝贵的资源和参考。
2024/11/18 17:16:43 19.14MB digital image processing
1
一种基于病灶提取和对比度增强的医学图像可逆数据隐藏新方案
2024/9/7 1:23:14 1.75MB 研究论文
1
基于matlab车牌识别,包括了灰度化,对比度增强,边缘提取,锐化,车牌定位,神经网络训练,车牌识别,完整的项目,可运行!!!!!!
2024/9/1 8:22:45 4.98MB CNN 灰度化 边缘化 特征提取
1
程序中有rgb三通道的直方图显示,可以明显看到图像对比度增强的效果。
2023/8/7 22:42:07 865B CLAHE MATLAB
1
在织物单位长度中排列的经纬纱根数,称为织物的经纬纱密度。
织物密度的计算单位以公制计,是指10cm内经纬纱排列的根数。
密度的大小,直接影响织物的外观,手感,厚度,强力,抗折性,透气性,耐磨性和保暖性能等物理机械指标,同时他也关系到产品的成本和生产效率的大小。
经纬密度的测定方法可以采用直接测数法。
直接测数法是凭借照布镜或织物密度分析镜来完成。
织物密度分析镜的刻度尺长度为5cm,在分析镜头下面,一块长条形玻璃片上刻有一条红线,在分析织物密度时,移动镜头,将玻璃片上红线和刻度尺上红线同时对准某两根纱线之间,以此为起点,边移动镜头边数纱线根数,直到5cm刻度线为此。
输出之纱线根数乘以2,即为10cm织物的密度值。
在点数纱线根数时,要以两根纱线之间的中央为起点,若数到终点时,超过0.5根,而不足一根时,应按0.75根算;
若不足0.5根时,则按0.25根算。
织物密度一般应测得3-4个数据,然后取其算术平均值为测定结果。
这种计数的方式可以使用图像处理技术自动来完成,设计一应用程序完成织物密度检测。
要求完成功能:1、能够读取和存储图像,对图像进行去噪和对比度增强;
2、对任意指定的距离范围内的织物进行自动经纬纱根数计数;
3、设计软件界面。
2023/7/5 8:33:54 1004KB 织物密度测量 GUI MATLAB
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡