搜狗实验室新闻分类语料库,主要有10个分类,共50多万条记录0汽车1财经2IT3健康4体育5旅游6教育7招聘8文化9军事
2025/8/9 21:23:17 25.78MB 搜狗 语料库 分类
1
本文件按类别列出所有CNAS实验室认可规范文件,有文件编号、名称、发布日期、实施日期以及被替代文件等,非常清晰明了,适合品质、实验室等相关人下载作为案头文件参考使用,本文件更新到2021年2月7号,是最新的。
2025/8/4 20:46:49 575KB cnas 实验室 认可 规范
1
最新完整英文版PAS54115:2015英国BSI电子烟标准,包括电子烟、电子烟液、电子水烟和相关产品,并规范它们的生产、进口、测试和标签。
本标准指南适用于电子烟生产商、分销商、监管机构和测试实验室等!
2025/8/1 0:48:40 12.67MB pas 54115 bsi 英国
1
基于JSP高校实验室仪器设备管理系统设计与实现毕业论文
1
一款用于普通高校实验室安全考试答题的帮助软件,答案齐全,很方便。
2025/7/5 7:27:26 6.17MB 实验室考试 高校 辅助工具
1
【原书名】CommunicationSystemsFourthEdition【原出版社】JohnWiley【作  者】(加)SimonHaykin[同作者作品][作译者介绍]【译  者】宋铁成[同译者作品]徐平平徐志勇等【丛书名】国外电子与通信教材系列【出版社】电子工业出版社【书号】7505382543【出版日期】2003年10月【开本】16开【页码】719【版次】1-1【内容简介】本书对通信系统的基础理论和关键环节进行了深入分析,力图让学生在讨论中领会通信的精髓。
全书首先给出通信系统的梗概及需要研究的关键技术,接着分章详细讨论了随机过程、连续波调制、脉冲调制、基带脉冲传输、信号空间分析、带通数据传输、扩频调制、多用户无线通信、信息论基础以及差错控制编码等。
各章都附有大量习题,便于学生实践掌握。
书中还给出了很有价值的附录,包括概率论、信号和系统描述、贝叶斯函数、超几何分布函数汇总、密码学方面的介绍以及一些有用的表格等。
全书强调通信理论的统计基础,并给出了用MATLAB模拟的8个计算机实验,这些实验几乎覆盖了各章节的主要内容,形成了独特的通信理论“软件实验室”。
【编辑推荐】随着微电子技术、计算机技术、激光技术、卫星与光纤等相关信息技术的发展,特别是计算机与通信的有机结合,现代通信正经历着一场变革。
在这场变革中,各种新技术、新手段、新业务、新系统层出不穷,现代通信的内容也日趋丰富。
在通信新技术不断产生,新需求逐步扩展的背景下,建立在多网互连互通、多个系统集成、多种技术综合应用基础上的一体化通信、全球个人通信迅速发展,这就要求通信技术工作者和通信工程等专业的学生不仅深入学习本专业的典型通信系统,还要全面学习和了解目前广泛应用的各种现代通信系统,以全面、系统地了解现代通信的目的。
本书正是为了实现这一目的而编写的。
作者介绍:SimonHaykin是国际电子电气工程界的著名学者,加拿大皇家学会院士,IEEE会士,于1953年获得英国伯明翰大学博士学位,现任加拿大麦克马斯特大学教授,在该校创办了通信研究实验室并长期担任主任。
他曾经获得IEEEMcNaughton奖章,在神经网络、通信、自适应滤波器等领域成果颇丰,著有多种标准教材。
目录第1章随机过程1.1简介1.2随机过程的数字定义1.3平稳过程1.4均值、相关函数和协方差函数1.5遍历过程1.6随机过程通过一个线性时不变滤波器1.7功率谱密度1.8高斯过程1.9噪声1.10窄带噪声1.11基于同相和正交分量的窄带噪声表示法1.12基于包络和相位分量的窄带噪声表示法1.13正弦信号加窄带噪声1.14计算机实验:平衰落信道1.15总结与讨论注释与参考习题第2章连续波调制第3章脉冲调制第4章基带脉冲传输第5章信号空间分析第6章通带数据传输第7章扩频调制第8章多用户无线通信第9章信息论基础第10章差错控制编码附录1概率论附录2信号与系统简述附录3贝塞尔函数附录4汇合型超几何函数附录5密码学附录6表格术语表参考文献索引
2025/6/29 1:22:56 17.56MB 西蒙.赫金 通信系统 第4版 中文版
1
MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
1
由剑桥大学AT&T实验室创建,包含40人共400张面部图像,部分志愿者的图像包括了姿态,表情和面部饰物的变化.该人脸库在人脸识别研究的早期经常被人们采用,但由于变化模式较少,多数系统的识别率均可以达到90%以上,因此进一步利用的价值已经不大.
2025/6/23 13:17:18 5.94MB 人脸识别
1
简介:
sfb sfb可帮助SQL测试和估算取决于扫描量的服务成本。
描述检查SQL语法免费估算查询费用每次运行每月自动替换查询参数在持续集成中很有用使用dryrun include安装$ pip install sfb要求Python> = 3.6 Jupyter笔记本Google合作实验室google-cloud-bigquery> = 2.6.1 pyyaml> = 5.4.1用法估算查询费用# If runs with no arguments, execute files in ./sql/*.sql.$ sfb{ " Succeeded " : [ { " SQL File " : " /home/admin/project/sfb_test/sql/covid19_open_data.covid19_open_da
2025/6/15 19:48:03 14KB
1
共 361 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡