波段合成,将单波段数据拼接成多波段数据,并且添加批处理功能
2025/3/5 9:53:25 27.81MB 波段合成 单波段 多波段 批处理
1
采用电子束沉积法在镁掺杂铌酸锂基底上镀制了多波段增透膜,透射波段分别为1.064μm,1.4~1.6μm和3.5~4.3μm,测量了薄膜在1064nm多脉冲辐照下的损伤阈值,以及无薄膜铌酸锂晶体本身的损伤阈值。
结果表明,镀膜之后,晶体的损伤阈值较未镀膜样品明显提高。
2024/8/24 22:38:14 751KB 薄膜 镁掺杂铌 多波段减 激光损伤
1
可以保留原始数据的投影信息,本代码实验数据是MOD08M3
2024/6/4 12:27:44 402B ARCGIS
1
matlab读取并显示envi标注格式img图像,支持显示单波段图像、多波段图像,用户可以根据需要选择不同波段组合显示,提供三种不同图像显示方法可供学习,另附详细注释说明
2024/3/26 2:52:04 2KB matlab img图像处理
1
为了同步获取夜间晴空视线无云下整层大气透过率和水汽总量,将望远镜、多波段滤光片与近红外增强型CCD相结合,搭建了利用恒星辐射进行测量的研究平台。
首先通过望远镜收集恒星辐射,辐射通过分波段滤光片滤光,利用CCD采集恒星图像。
进一步提取拍摄图像的灰度值,采用Langley标定法计算整层大气透过率,同时利用改进的Langley法计算大气水汽总量。
对测量结果、激光雷达和微波辐射计的测量值进行比较,验证了测量方法的可靠性。
所开展的工作丰富了夜晚同步测量整层大气透过率和水汽总量的手段,对空间遥感和气象研究有一定的应用价值。
2023/12/16 10:39:53 6.67MB 大气光学 水汽总量 整层大气 夜间
1
第1章绪论1.1合成孔径雷达概况1.2发展历程1.2.1国外SAR发展历程1.2.2我国SAR发展历程1.3发展趋势1.4主要应用1.4.1军事领域1.4.2民用领域1.5内容安排第2章合成孔径雷达2.1概述2.2SAR成像基本原理2.2.1距离向分辨率与脉冲压缩技术2.2.2方位向分辨率与合成孔径原理2.2.3点目标信号回波模型2.2.4SAR成像处理与算法2.3SAR成像的几何特性2.3.1斜距图像的比例失真2.3.2透视收缩与顶底位移2.3.3雷达阴影2.3.4雷达视差与立体观察第3章雷达目标电磁散射计算3.1概述3.1.1电磁散射基本计算方法3.1.2严格的经典解法3.1.3近似求解方法3.2等效电磁流计算3.2.1等效电磁流奇异性的消除3.2.2等效电磁流的分析与计算3.3多次散射的计算3.3.1几何/物理光学混合算法3.3.2存在多重散射的条件和遮挡关系的判断3.3.3几何光学/等效电磁流混合算法3.3.4GO/PO混合方法的应用3.4腔体结构电磁散射RCS计算3.4.1复射线近轴近似电磁散射算法3.4.2计算实例3.5复杂目标电磁散射的计算3.5.1复杂目标几何建模3.5.2复杂目标电磁散射混合计算第4章合成孔径雷达图像特征分析4.1概述4.2SAR图像辐射特征4.2.1SAR图像回波强度的概率分布4.2.2辐射分辨率4.3SAR图像噪声特征4.4SAR图像目标几何特征4.4.1点目标4.4.2线目标4.4.3面目标4.5SAR图像灰度统计特征4.5.1幅度特征4.5.2直方图特征4.5.3统计特征4.6SAR图像纹理特征4.6.1方向差分特征4.6.2灰度共现特征4.6.3小波纹理能量特征第5章合成孔径雷达图像分割5.1概述5.2阈值分割法5.2.1基于遗传算法的二维最大熵阈值分割法5.2.2二维模糊熵阈值分割法5.2.3双阈值分割算法5.3基于马尔可夫随机场模型的分割法5.3.1吉布斯MEF分割模型5.3.2吉布斯MRF分割算法5.3.3多尺度MRF图像分割5.4基于多尺度几何分析的分割法5.4.1基于Contourlet变换的SAR图像分割5.4.2基于Wedgelet变换的SAR图像分割5.5分割评价方法5.5.1分割质量评价5.5.2适用情况分析第6章合成孔径雷达图像目标分类6.1概述6.1.1分类流程6.1.2评价标准6.2概率密度函数估计6.2.1单-密度函数6.2.2混合密度函数6.2.3有限混合密度函数的逼近能力6.3参数估计6.3.1极大似然估计6.3.2EM算法6.4最小距离分类法6.5最大后验概率分类法6.6支持向量机分类法6.6.1支持向量机原理6.6.2支持向量机分类法6.7隐马尔可夫优化分类法6.7.1HMM原理6.7.2HMOC模型第7章合成孔径雷达图像目标识别7.1概述7.1.1识别方法7.1.2自动目标识别系统7.2基于电磁特性的目标识别7.3典型目标识别7.3.1道路识别7.3.2机场识别7.3.3MSTAR坦克识别第8章合成孔径雷达图像融合8.1概述8.1.1图像融合概念8.1.2融合效果评价8.2SAR图像与可见光图像融合8.2.1提升小波变换8.2.2基于提升小波变换区域统计特性的融合算法8.3SAR图像与多光谱图像融合8.3.1主成分分析方法8.3.2基于主成分分析的SAR与多光谱图像融合8.4多波段SAR图像融合8.4.1基于atrous算法方向滤波器组的多波段SAR图像灰度融合8.4.2多波段SAR图像伪彩色融合第9章合成孔径雷达图像压缩9.1概述9.1.1第一代和第二代压缩技术9.1.2多尺度方向分析技术9.2SAR图像压缩中的典型特征9.2.1纹理特征9.2.2变换域系数统计特征9.3SAR图像Non-SWMDA压缩方法9.3.1不可分离小波的提升实现9.3.2基于块分割的二叉树编码方案设计9.4SAR图像压缩效果评价9.4.1保真度准则9.4.2特征衡量标准
2023/10/25 11:11:44 43.18MB 合成孔径雷达 雷达成像 SAR成像
1
HJ-1数据读取补钉,直接双击运行.sav或者拷贝sav文件到ENVI装置目录的save_add目录下,启动ENVI->File->OpenExternalFile->HJ-1->HJ-1A/1BTools货物。
直接读取CCD、HIS、IRS数据,输入下场为一个多波段的ENVI尺度栅格文件,并带有中间波长等信息,其中CCD数据能够直接输入定标下场(辐射亮度)。
2023/4/21 21:32:31 282KB HJ-1 读取补丁
1
针对海面背景舰船目标单一波段图像识别率低的问题,提出了一种基于卷积神经网络(CNN)的融合识别方法。
该方法提取可见光、中波红外和长波红外3个波段舰船目标特征进行融合识别。
模型次要分为3个步骤:通过设计的6层CNN,同时对三波段图像进行特征提取;利用基于互信息的特征选择方法对串联的三波段特征向量按照重要性进行排序,并按照图像清晰度评价指标选取固定长度的特征向量作为目标识别依据;通过额外的2个全连接层和输出层进行回归训练。
采用自建的三波段舰船图像数据库进行模型的训练和测试,共包含6类目标,5000余张图像。
实验结果表明,本文方法识别率达到84.5%,与单波段识别方法相比有明显提升。
1
主要使用multibandread函数读取dat文件,显示单波段图像,多波段可以按波段显示,详细方法前面有解释,multibandread函数的参数可以根据本人的hdr文件输入
2015/4/1 1:44:29 743B matlab dat遥感图像
1
针对高光谱数据维数高、数据量大、信息冗余多、波段相关性强等特点,在综合各种数据降维方法的基础上,提出一种基于最佳波段组合的高光谱遥感影像分类方法。
以美国印第安纳州地区的AVIRIS数据为例,分析各波段信息量和相邻波段的相关性,利用子空间划分、分段波段指数选择法,进行特征波段的选择;并针对难区分地物类别,应用J-M距离模型对其可分性进行判别,获得最佳波段组合。
最初采用支持向量机分类器进行分类。
实验结果表明,采用最佳波段组合方法,可以有效地提高高光谱的分类精度。
2019/5/1 5:13:11 253KB 分类算法
1
共 11 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡