通俗易懂,讲解很好,易理解,案例明确,过程清晰,很实用。
2025/1/9 12:01:41 4.63MB 多变量 反馈 控制 解耦
1
倒立摆系统是自动控制理论中比较典型的控制对象,许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等,都可以通过倒立摆系统直观地表现出来。
因此它成为自动控制理论研究的一个较为普遍的研究对象。
倒立摆系统作为一个被控对象,是快速、多变量、开环不稳定、非线性的高阶系统,必须施加十分有力的控制手段才能使之稳定。
本文是通过模糊控制来实现其稳定的。
2024/12/4 12:57:17 533KB 倒立摆,模糊控制
1
seqHMM:分类序列的多变量和多通道离散隐马尔可夫模型
2024/11/5 13:52:54 2.03MB hmm r time-series em-algorithm
1
包括19篇文档和2篇PDF文件,均为现代控制课程作业整理,倒立摆系统的建模及Matlab仿真,希望对大家有帮助。
倒立摆作为一个高阶次、多变量、非线性和强耦合的自然不稳定系统,一直是控制领域研究的热点问题。
它广泛应用于控制理论研究、航空航天控制、机器人、杂技顶杆表演等领域,在自动化领域中具有重要的理论价值和实践价值。
这些物理装置与控制系统的稳定性密切相关,深刻揭示了自然界一种基本规律,即一个自然不稳定的被控对象,通过控制手段可使之具有良好的稳定性。
倒立摆的研究具有重要的工程应用价值。
如机器人问题,机器人行走类似倒立摆系统,尽管第一台机器人在美国问世以来己有三十多年的历史,但机器人的关键技术至今仍未很好解决。
再如太空应用中,倒立摆系统的稳定与空间飞行器控制和各类伺服云台的稳定有很大相似性,它也是日常生活中所见到的任何重心在上、支点在下的控制问题的抽象,因此,倒立摆机理的研究又具有重要的工程应用背景,成为控制理论中经久不衰的研究课题。
倒立摆的控制方法,在军工、航天和机器人领域有广泛的用途,对处理一般工业过程亦有指导性作用。
2024/9/4 8:19:36 9.99MB matlab 倒立摆 现代控制理论 simulink
1
matlab多变量广义预测控制实例仿真,附含例子的文档说明
2024/7/25 14:22:57 48KB GPC
1
PID电机控制目录第1章数字PID控制1.1PID控制原理1.2连续系统的模拟PID仿真1.3数字PID控制1.3.1位置式PID控制算法1.3.2连续系统的数字PID控制仿真1.3.3离散系统的数字PID控制仿真1.3.4增量式PID控制算法及仿真1.3.5积分分离PID控制算法及仿真1.3.6抗积分饱和PID控制算法及仿真1.3.7梯形积分PID控制算法1.3.8变速积分PID算法及仿真1.3.9带滤波器的PID控制仿真1.3.10不完全微分PID控制算法及仿真1.3.11微分先行PID控制算法及仿真1.3.12带死区的PID控制算法及仿真1.3.13基于前馈补偿的PID控制算法及仿真1.3.14步进式PID控制算法及仿真第2章常用的PID控制系统2.1单回路PID控制系统2.2串级PID控制2.2.1串级PID控制原理2.2.2仿真程序及分析2.3纯滞后系统的大林控制算法2.3.1大林控制算法原理2.3.2仿真程序及分析2.4纯滞后系统的Smith控制算法2.4.1连续Smith预估控制2.4.2仿真程序及分析2.4.3数字Smith预估控制2.4.4仿真程序及分析第3章专家PID控制和模糊PID控制3.1专家PID控制3.1.1专家PID控制原理3.1.2仿真程序及分析3.2模糊自适应整定PID控制3.2.1模糊自适应整定PID控制原理3.2.2仿真程序及分析3.3模糊免疫PID控制算法3.3.1模糊免疫PID控制算法原理3.3.2仿真程序及分析第4章神经PID控制4.1基于单神经元网络的PID智能控制4.1.1几种典型的学习规则4.1.2单神经元自适应PID控制4.1.3改进的单神经元自适应PID控制4.1.4仿真程序及分析4.1.5基于二次型性能指标学习算法的单神经元自适应PID控制4.1.6仿真程序及分析4.2基于BP神经网络整定的PID控制4.2.1基于BP神经网络的PID整定原理4.2.2仿真程序及分析4.3基于RBF神经网络整定的PID控制4.3.1RBF神经网络模型4.3.2RBF网络PID整定原理4.3.3仿真程序及分析4.4基于RBF神经网络辨识的单神经元PID模型参考自适应控制4.4.1神经网络模型参考自适应控制原理4.4.2仿真程序及分析4.5基于CMAC(神经网络)与PID的并行控制4.5.1CMAC概述4.5.2CMAC与PID复合控制算法4.5.3仿真程序及分析4.6CMAC与PID并行控制的Simulink仿真4.6.1Simulink仿真方法4.6.2仿真程序及分析第5章基于遗传算法整定的PID控制5.1遗传算法的基本原理5.2遗传算法的优化设计5.2.1遗传算法的构成要素5.2.2遗传算法的应用步骤5.3遗传算法求函数极大值5.3.1遗传算法求函数极大值实例5.3.2仿真程序5.4基于遗传算法的PID整定5.4.1基于遗传算法的PID整定原理5.4.2基于实数编码遗传算法的PID整定5.4.3仿真程序5.4.4基于二进制编码遗传算法的PID整定5.4.5仿真程序5.5基于遗传算法摩擦模型参数辨识的PID控制5.5.1仿真实例5.5.2仿真程序第6章先进PID多变量解耦控制6.1PID多变量解耦控制6.1.1PID解耦控制原理6.1.2仿真程序及分析6.2单神经元PID解耦控制6.2.1单神经元PID解耦控制原理6.2.2仿真程序及分析6.3基于DRNN神经网络整定的PID解耦控制6.3.1基于DRNN神经网络参数自学习PID解耦控制原理6.3.2DRNN神经网络的Jacobian信息辨识6.3.3仿真程序及分析第7章几种先进PID控制方法7.1基于干扰观测器的PID控制7.1.1干扰观测器设计原理7.1.2连续系统的控制仿真7.1.3离散系统的控制仿真7.2非线性系统的PID鲁棒控制7.2.1基于NCD优化的非线性优化PID控制7.2.2基于NCD与优化函数结合的非线性优化PID控制7.3一类非线性PID控制器设计7.3.1非线性控制器设计原理7.3.2仿真程序及分析7.4基于重复控制补偿的高精
2024/7/16 13:07:56 5.56MB PID
1
3D渐变下降学习目标了解同时更改y截距和斜率变量时梯度下降的工作原理了解偏导数的含义了解取偏导数的规则介绍在上一节中,我们讨论了如何考虑沿3-d成本曲线移动。
我们知道,沿着上面的3-d成本曲线移动,意味着更改回归线的$m$和$b$变量,如下所示。
我们这样做的目的是使我们的生产线更好地匹配我们的数据。
回顾二维的梯度下降在本课程中,我们将学习三个维度的梯度下降,但让我们首先记住当仅更改回归线的一个变量时它如何在两个维度上起作用。
在二维中,当仅更改一个变量$m$或$b$时,梯度下降意味着沿成本曲线前进或后退,并采用特定的步长。
为了确定是向前还是向后移动以及步长大小,我们假设站在此二维曲线(如下所示)上并感觉成本曲线的斜率来告诉我们如何移动。
朝一个方向迈进意味着我们的回归变量之一发生了变化。
因此,这是二维的下降。
什么是三维三维下降?3维梯度下降
2024/7/2 1:47:53 556KB JupyterNotebook
1
多变量广义预测控制matlab程序调试运行成功
2024/6/13 1:45:35 5KB mimo gpc
1
【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
kerastensorflowlstm多变量序列的预测+数据文件,源代码
2024/4/28 0:10:27 921KB lstm
1
共 52 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡