针对高光谱图像特征利用不足和训练样本难以获取的问题,提出了一种具有多特征和改进堆栈稀疏自编码网络的高光谱图像分类算法。
采用流形学习获得高光谱图像的低维数据结构,并提取高光谱图像的光谱特征、具有空间信息的局部二值模式(LBP)特征及拓展多属性剖面(EMAP)特征。
利用主动学习查询特征性强的未标记样本并将其标记,利用融合空谱联合信息的样本训练堆栈主动稀疏自编码神经网络并用Softmax分类器对其分类。
Indianpines数据集的总体分类精度达到98.14%,PaviaU数据集总体分类精度达到97.24%。
实验结果表明,该算法分类精度高,边界点分类效果更好。
2025/6/29 4:53:23 12.88MB 图像处理 高光谱图 多特征 流形学习
1
《MATLAB图像处理实例详解》对图像处理的基础概念做了必要交代,重点给出了MATLAB在图像处理各个环节中的实现方法,在讲解各个知识点时列举了丰富的实例,使得《MATLAB图像处理实例详解》应用性很强。
书中的实例程序完整,在基于MATLAB编程的图像处理应用和开发中有很高的实用价值。
《MATLAB图像处理实例详解》附带1张光盘,收录了《MATLAB图像处理实例详解》重点内容的配套多媒体教学视频及书中涉及的实例源文件。
这些资料可以大大方便读者高效、直观地学习《MATLAB图像处理实例详解》内容。
《MATLAB图像处理实例详解》共15章,分为3篇。
第1篇为MATLAB及图像基础,涵盖的内容有图像基础、MATLAB基础和MATLAB数字图像处理基础;
第2篇为基于MATLAB的常见图像处理技术,涵盖的内容有数字图像的运算、数字图像增强技术、数字图像复原技术、图像分割技术、图像变换技术和彩色图像处理;
第3篇为基于MATLAB的高级图像处理技术及应用,涵盖的内容有图像压缩编码、图像特征分析、图像形态学处理、小波在图像处理中的应用、基于Simulink的视频和图像处理和MATLAB图像处理综合实例。
2025/6/23 10:03:04 122.4MB MATLAB 图像处理 程序
1
针对复杂运动背景中慢速小目标检测误检率高,实时性差等问题,提出了基于自适应阈值分割的慢速小目标检测算法。
首先计算连续两帧图像特征点的金字塔光流场,对光流场进行滤波,获取匹配特征点集合。
然后对图像运动背景进行建模,拟合投影模型参数,通过投影模型得到运动背景补偿图像,进行图像差分处理,获得差分图像。
最后迭代计算差分图像的自适应阈值,修正差分阈值,差分图像二值分割,检测出运动目标。
实验结果表明算法能够准确地检测出复杂背景中的慢速小目标,虚警率为2%,目标漏检率为2.6%,目标检测准确率95.4%,每帧图像目标检测时间为38ms,能够满足运动目标检测对实时性的要求。
1
基于局部视觉特征聚合的图像检索,用VLAD方法降低图像特征向量维数。
2025/6/8 0:44:43 10.08MB 图像检索 VLAD sift
1
基于harris角点特征提取的matlab图像拼接程序,根据harris角点法,提取2张图像的特征点,然后匹配2图像特征点,找到正确位移量,进行图像拼接。
2025/3/24 2:51:52 441KB matlab Harris角点 图像拼接 特征提取
1
Opencv用于图像特征提取的一个库。
分享方便大家使用。
2025/3/11 8:57:33 64KB opencv
1
基于MATLAB的树叶图像特征分类识别,图像分析处理分割特征提取分类识别等
2024/12/9 13:46:11 1.67MB 图像特征识别
1
数据集在IT行业中,特别是在机器学习和计算机视觉领域,扮演着至关重要的角色。
"各种病虫害的高清数据集"是一个专门针对农业病虫害识别的图像数据集,它包含了五个不同类别的高清图片,这些图片是jpg格式,非常适合用于训练和测试深度学习模型。
我们来详细了解一下数据集的概念。
数据集是模型训练的基础,它包含了一系列有标记的样本,这些样本用于训练算法学习特定任务的特征和模式。
在这个案例中,数据集中的每个样本都是一张病虫害的高清图片,可能包括农作物上的疾病症状或害虫。
这些图片经过分类,分别属于五个不同的类别,这意味着模型将需要学习区分这五种不同的病虫害类型。
在计算机视觉任务中,高清图片通常能提供更多的细节,有助于模型更准确地学习和理解图像特征。
jpg格式是一种常见的图像存储格式,它采用了有损压缩算法,能在保持图像质量的同时,减少文件大小,适合在网络传输和存储中使用。
对于这样的数据集,可以进行以下几种机器学习任务:1.图像分类:训练一个模型,输入一张病虫害图片,输出图片所属的类别。
例如,输入一张叶片有斑点的图片,模型应该能够判断出这是哪种病害。
2.目标检测:除了识别类别,还需要确定病虫害在图片中的位置,这要求模型能够定位并框出病虫害的具体区域。
3.实例分割:进一步细化目标检测,不仅指出病虫害的位置,还能精确到每个个体,这对于计算病虫害数量或者分析病害程度非常有用。
4.异常检测:训练模型识别健康的农作物图像,当出现病虫害时,模型会发出警报,帮助农民尽早发现并处理问题。
构建这样的模型通常涉及以下几个步骤:1.数据预处理:包括图片的缩放、归一化、增强(如翻转、旋转)等,目的是提高模型的泛化能力。
2.模型选择:可以使用经典的卷积神经网络(CNN),如AlexNet、VGG、ResNet等,或者预训练模型如ImageNet上的模型,再进行微调。
3.训练与验证:通过交叉验证确保模型不会过拟合,并调整超参数以优化性能。
4.测试与评估:在独立的测试集上评估模型的性能,常用的指标有准确率、召回率、F1分数等。
5.部署与应用:将训练好的模型部署到实际系统中,如智能手机APP或农田监控系统,实时识别并报告病虫害情况。
"各种病虫害的高清数据集"为开发精准的农业智能识别系统提供了基础,通过AI技术可以帮助农业实现智能化、精准化管理,提升农作物的产量和质量,对现代农业发展具有重要意义。
2024/11/22 10:52:17 840.11MB 数据集
1
为《MATLAB图像处理:能力提高与应用案例》的随书源程序,该书讲述现代数字图像处理的热点问题、关键技术、应用实例、解决方案和发展前沿。
分为提高篇和应用篇两大部分,共4章,内容包括:精通“图像特征提取”、细说“数字图像理解”、品读“典型应用实例”和活用“数字图像处理”。
与其他同类书籍相比,《MATLAB图像处理:能力提高与应用案例》具有例程丰富、解释翔实、传承经典、突出前沿、图文并茂、语言生动等特点。
2024/10/15 15:27:52 64.69MB matlab 图像处理 源程序
1
引入辅助任务信息有助于立体匹配模型理解相关知识,但也会增加模型训练的复杂度。
为解决模型训练对额外标签数据的依赖问题,提出了一种利用双目图像的自相关性进行多任务学习的立体匹配算法。
该算法在多层级渐进细化过程中引入了边缘和特征一致性信息,并采用循环迭代的方式更新视差图。
根据双目图像中视差的局部平滑性和左右特征一致性构建了损失函数,在不依赖额外标签数据的情况下就可以引导模型学习边缘和特征一致性信息。
提出了一种尺度注意的空间金字塔池化,使模型能够根据局部图像特征来确定不同区域中不同尺度特征的重要性。
实验结果表明:辅助任务的引入提高了视差图精度,为视差图的可信区域提供了重要依据,在无监督学习中可用于确定单视角可见区域;在KITTI2015测试集上,所提算法的精度和运行效率均具有一定的竞争力。
1
共 78 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡