系统的讲述了图像处理的基本方法,包括轮廓提取,去噪,图像增强,图像变换,图像压缩等,并相对应的配备了部分关键源代码
2024/12/24 10:21:53 8.07MB c语言 数字图像处理
1
IDL使用界面编辑实现界面的简单可视化,包括打开(JPEG、Bmp、tiff等格式)、保存、退出、KL、图像增强(罗伯特、索伯尔变换)、边缘提取、直方图均衡化、对比度增强、波段运算等功能
2024/12/20 22:48:36 3KB IDL 遥感影像
1
《MilanSonka-ImageProcessing,AnalysisandMachineVision》是图像处理、分析和机器视觉领域的一本经典教材,第3版提供了高清英文原版的PDF版本。
这本书深入浅出地探讨了图像处理的基础理论和应用,是计算机视觉、电子工程、生物医学工程等相关专业学生和研究人员的重要参考书。
我们要理解图像处理的基本概念。
图像处理涉及到对数字图像进行各种操作,以改善其质量、提取有用信息或进行分析。
这包括图像增强、去噪、分割和复原等技术。
例如,图像增强通过调整亮度、对比度来优化视觉效果;
去噪则通过滤波器去除图像中的噪声;
图像分割将图像区域划分为不同的对象或类别,便于进一步分析。
机器视觉则是图像处理的一个重要应用领域,它使计算机能够“看”并理解图像。
在《MilanSonka》一书中,读者可以学习到如何构建和应用机器视觉系统。
这包括特征检测(如边缘检测、角点检测)、模板匹配、模式识别和物体识别等技术。
这些技术在自动驾驶、无人机导航、工业自动化和医疗诊断等领域有着广泛应用。
此外,书中还涵盖了与机器学习相关的主题,如监督学习和无监督学习,它们在图像分类、目标检测和图像识别任务中至关重要。
支持向量机(SVM)、神经网络、深度学习框架(如卷积神经网络CNN)等现代机器学习方法也是书中讨论的重点。
深度学习,尤其是深度卷积网络,已经在图像处理和计算机视觉领域取得了突破性进展,极大地推动了人脸识别、图像生成和自动驾驶等技术的发展。
书中还涉及到了图像分析,这是对图像内容进行理解和解释的过程。
这包括图像理解、场景分析和行为识别。
图像理解需要从图像中提取高级语义信息,比如识别出图像中的物体、场景和事件。
场景分析则涉及环境的理解,例如确定图像中的背景、前景和物体之间的关系。
行为识别则关注动态图像中的动作和活动,如行人跟踪和运动分析。
书中还涵盖了实际应用中的算法实现和评估方法,这对于任何从事图像处理和机器视觉研究的人来说都是必不可少的知识。
实验部分通常会介绍如何使用编程语言(如MATLAB或Python)实现所讨论的算法,并提供数据集和代码示例。
《MilanSonka-ImageProcessing,AnalysisandMachineVision》是一部全面覆盖图像处理、分析和机器视觉的教材,无论你是初学者还是经验丰富的专业人士,都能从中受益匪浅。
通过深入学习这本书,你可以掌握图像处理的基本原理,理解机器视觉的核心技术,并了解如何将这些知识应用于实际项目中。
2024/12/18 9:29:46 26.8MB 图像处理
1
数字图像处理是研究如何通过计算机技术处理和分析图像的学科,主要应用于图像增强、恢复、分割、特征提取和识别等任务。
数字图像处理的第三版由RafaelC.Gonzalez和RichardE.Woods编写,二人来自田纳西大学和MedDataInteractive公司。
这本书对数字图像处理领域进行了全面的介绍,涵盖了数字图像处理的历史背景、基本概念、技术和算法。
冈萨雷斯的这本书被认为是该领域的重要参考资料。
数字图像处理可以应用于医疗成像、遥感、安全监控、图像压缩、机器视觉等多个领域。
例如,在医疗成像中,数字图像处理可以帮助医生更清晰地观察患者身体组织的结构,从而提高诊断的准确性;
在遥感领域,通过处理和分析遥感图像可以获取地球表面的信息,用于天气预报、地理信息系统的建立等。
数字图像处理涉及的算法和工具主要包括图像的采集、处理、分析和理解等步骤。
图像采集是使用摄像头、扫描仪等设备将图像转换为计算机可以处理的数据形式;
图像处理通常包括图像的预处理(如去噪、对比度增强)、图像变换(如傅里叶变换、小波变换)和图像恢复等;
图像分析主要涉及到图像分割、特征提取、模式识别等内容;
图像理解则试图使计算机能够解释图像内容,达到类似于人类理解图像的水平。
数字图像处理的起源可以追溯到20世纪50年代末60年代初,当时人们开始使用计算机技术对图像进行处理。
早期的数字图像处理主要用于空间探索、卫星图像处理等领域,随着计算机技术的发展和图像处理理论的完善,数字图像处理逐渐扩展到生物医学、工业、安全等其他领域。
数字图像处理的一个重要分支是数字视频处理,其关注如何处理连续的图像序列,以实现视频压缩、视频增强、运动分析等功能。
视频处理技术在高清电视、网络视频、电影后期制作等行业有着广泛的应用。
数字图像处理是一个不断发展的领域,随着人工智能技术的发展,基于深度学习的图像处理技术成为当前的研究热点。
深度学习模型,尤其是卷积神经网络(CNN)在图像识别、分类、目标检测和图像分割等方面显示出了巨大的潜力。
总结来说,数字图像处理是通过计算机技术来处理图像数据,使之更适合人眼或机器分析的一门技术。
随着技术的进步和应用的拓展,它在多个行业中发挥着越来越重要的作用。
冈萨雷斯的《数字图像处理》作为该领域的经典教材,为学习和研究这一领域的专业人士提供了宝贵的资源和参考。
2024/11/18 17:16:43 19.14MB digital image processing
1
本文档为C#图像处理编程,界面设计简洁大方,功能涉及图像基本操作(C)、图像增强(Z)、图像特技显示(T)、数学形态学(L)。
灰度、饱和度、透明度调节、高斯、二阶优化、霓虹、负像、浮雕等
2024/11/15 18:14:12 7.38MB C# 图像处理 源程序
1
基于红外图像低分辨率、低对比度、视觉特性差的特性,以及传统的利用直方图均衡化进行红外图像增强的方法会丢失图像的细节信息、增强红外图像的噪声的特性,将小波变换的多尺度、多分辨率的特点和直方图均衡化的方法相结合,提出一种更好的实现红外图像增强的算法。
2024/11/10 14:54:01 536KB 小波变换 直方图均衡
1
matlab语言PCNN实现图像分割边缘检测图像增强等
2024/11/9 12:15:37 553KB PCNN
1
图像的增强/////////////////////////////////直方图对话框构造函数;
ZFT::ZFT(CWnd*pParent/*=NULL*/):CDialog(ZFT::IDD,pParent)//ZFT为定义的用来显示直方图的对话框类;
{ Width=Height=0;//对话框初始化阶段设置图像的宽和高为"0";
}////////////////////////对话框重画函数;
voidZFT::OnPaint(){ CRectrect;//矩形区域对象;
 CWnd*pWnd;//得到图片框的窗口指针;
 pWnd=GetDlgItem(IDC_Graphic);//得到ZFT对话框内的"Frame"控件的指针;
 file://(IDC_Graphic为放置在对话框上的一个"Picture"控件,并讲类型设置为"Frame")。
 pWnd->GetClientRect(&rect);//得到"Frame"控件窗口的"视"区域;
 inti; CPaintDCdc(pWnd);//得到"Frame"控件的设备上下文;
 file://画直方图的x、y轴;
 dc.MoveTo(0,rect.Height()); dc.LineTo(rect.Width(),rect.Height()); dc.MoveTo(0,rect.Height()); dc.LineTo(0,0); file://画直方图,num[]是"ZFT"的内部数组变量,存放的是图像各个灰度级出现的概率;
该数组的各个分量在  显示具体图像的直方图时设置;
 for(i=0;iGetWindowRect(&rect);//获取pWnd窗口对象窗口区域位置;
 file://屏幕坐标转换为客户区坐标;
 ScreenToClient(&rect); file://判断当前鼠标是否指在直方图内;
 if(rect.PtInRect(point)) {  intx=point1.x-rect.left;  file://当前鼠标位置减去区域的起始位置恰好为当前鼠标所指位置所表示的灰度级;
  string.Format("%d",x);  file://显示当前位置对应的图像的灰度级;
  pWndText->SetWindowText((LPCTSTR)string); } CDialog::OnMouseMove(nFlags,point);}////////////////////////////////////////voidCDibView::OnImagehorgm()file://在程序的"视"类对象内处理显示图像直方图的函数;
{ CDibDoc*pDoc=GetDocument(); HDIBhdib; hdib=pDoc->GetHDIB(); BITMAPINFOHEADER*lpDIBHdr;//位图信息头结构指针;
 BYTE*lpDIBBits;//指向位图像素灰度值的指针;
 lpDIBHdr=(BITMAPINFOHEADER*)GlobalLock(hdib);//得到图像的位图头信息 lpDIBB
2024/11/9 9:49:33 134KB 图像增强
1
主要研究基于分数阶偏微分方程的医学图像增强的算法。
主要是在最为经典的Riemman-Liouville(R-L)积分算法基础上,将该算法中值滤波和分数阶积分相结合,利用自适应中值滤波算法中的噪声判别条件来检测噪声点,然后用“噪声边缘”判别函数对其中的可疑噪声点进行二次检测,并根据图像的局部统计信息和结构特征构造自适应的分数阶阶次,最后将检测出的噪声点用自适应的分数阶积分掩模进行滤波去噪。
2024/11/5 13:04:55 2KB PDE
1
本论文的编写围绕四个项目:图像空域/时域变换、图像增强、染色体计数与提取Mnist链码组成。
项目的编写基于Windows7操作系统,使用VS2013作为开发环境,以OpenCV作为内部核心处理算法库。
2024/10/21 16:40:30 1.73MB 染色体计数
1
共 98 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡