基于直接功率控制的双馈风力发电系统及其低电压穿越
2024/8/6 9:41:13 2.18MB 直接功率 控制 双馈风力 发电系统
1
光伏发电系统MPPT仿真
2024/8/2 10:47:48 23KB matlab
1
光伏阵列能否正常工作直接关系到整个光伏发电系统运行的安全性和可靠性。
对于光伏阵列故障诊断中传统的BP神经网络诊断算法准确率低、收敛速度慢等问题,提出一种基于粒子群优化RBF神经网络的故障诊断算法。
建立以光伏阵列的4种故障特征参数为输入、5种情况为输出的故障诊断模型,对基于粒子群算法的网络模型的自适应权重寻优进行仿真实验。
最后,将优化算法与BP神经网络算法以及RBF神经网络算法进行对比。
实验结果表明,优化算法不仅可以有效地诊断光伏阵列的故障类型,而且还可以提高故障诊断的准确率。
2024/7/16 10:56:42 958KB 行业研究
1
光伏发电系统设计软件,傻瓜型的,可以作为系统参考。
2024/6/20 18:22:33 2.45MB Homer
1
基于MATLAB的光伏系统的仿真完美波形!
1
概述PSAT(PowerSystemAnalysisToolbox),中文翻译为电力系统分析软件包,包含了:PF-潮流计算;
CPF-连续潮流;
OPF-最优潮流;
SSSA-小扰动分析;
TDS-时域仿真;
GUI-用户人机界面;
GNE-自定义模型等功能。
经过验证,该工具包已经可以计算上千节点规模的系统。
而且该软件包源代码完全公开,因此用户可以根据自己的研究兴趣编写修改相应源代码实现研究目的。
同时,依托于Matlab的强大计算功能以及丰富的控制、信号处理、鲁棒控制、模糊控制等工具箱,使得PSAT可以把控制科学、信号处理等方面的新思想与电力系统的传统仿真计算有机地结合起来[1]。
系统模型库及主界面为了适应针对电力系统新元件、新问题的研究,PSAT提供了丰富的静态、动态模型库:电力系统分析软件包PSAT主界面介绍(1)潮流模型,母线、传输线、变压器、平衡母线、PV母线、恒功率负荷以及并联电容器等;
(2)电力市场相关模型,供求上下限、储备功率等;
(3)断路器相关模型,故障类型、开关等;
(4)测量元件模型,测频器、相量测量单元PMU等;
(5)电机模型,同步、异步电机;
(6)负荷模型(ZIP),电压、频率相关模型等;
(7)控制器模型,调速器、励磁,电力系统稳定器PSS及附加阻尼控制(POD);
(8)柔性交流输电技术(FACTS)模型,静止无功补偿器(SVC)、可控串联补偿装置(TCSC)、静止同步串联补偿器(SSSC)、统一潮流控制器(UPFC);
(9)直流输电模型;
(10)分布式发电系统,各种风机模型。
主要功能(1)潮流计算:进行各种电力系统问题研究的基础,PSAT包括了标准牛顿-拉夫逊算法、快速解耦算法等。
PSAT具有友好的潮流计算界面,在装载算例(*.mdl或*.m)文件后,选择powerflow完成潮流计算后可以弹出潮流计算GUI。
其中,清楚地列出了母线电压相角、有功、无功等潮流结果。
同时,PSAT还支持将潮流结果以文本格式输出,这样的潮流结果可以方便地应用于任何软件编写的电力系统分析软件的输入。
(2)最优潮流:PSAT采用基于Mehrotra预测-修改的内点法求解最优潮流问题,并且PSAT最优潮流中的目标函数相当丰富。
(3)小信号分析:低频振荡正成为跨大区输电安全性的瓶颈,针对这一问题的研究已广泛展开。
在完成基本的潮流计算后,PSAT便可以进行特征值参与因子等计算工作。
它采用解析法计算Jacobian矩阵,这样就保证了计算的精确性。
(4)时域仿真分析:PSAT采用修改系统参数(例如支路阻抗数值大小)以及其专有的嵌入式的故障描述文件(*.m)来构成。
2024/5/30 20:58:52 1.56MB Matlab PSAT 工具
1
一种独立运行的风光互补发电系统的设计,提供了风机、太阳能电池、蓄电池的计算方法
2024/5/30 13:23:53 512KB 风光互补
1
光伏发电作为解决传统能源枯竭和环境污染的重要途径,正成为世界新能源发展的焦点。
本文从家庭并离网一体光伏发电系统的实际应用出发,提出了一种针对性的能量管理策略。
该能量管理策略可根据光伏组件输出功率、锂电池荷电状态、负荷情况以及直流母线电压变化情况,合理切换系统工况,确保系统稳定运行。
通过家庭并离网一体光伏发电系统样机实验,验证了本文所提能量管理策略的可行性和有效性。
1
独立光伏发电系统MPPT的模糊PID控制研究
2024/2/27 13:53:19 5.77MB mppt
1
小型风光互补发电系统控制器的研究,对太阳能充电器和风机充电器进行研究
2023/11/25 1:29:21 6.8MB 风光互补
1
共 21 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡