本资料为基于python的卷积神经网络(CNN)实现layer文件夹中包括卷积层、池化层、全连接层、relu层等基础层没有调用tensorflow,pytorch等深度学习框架,手动实现了各层的反向传播BP算法
1
DeepLearningToolbox™提供了一个框架,用于设计和实现具有算法,预训练模型和应用程序的深度神经网络。
您可以使用卷积神经网络(ConvNets,CNN)和长期短期记忆(LSTM)网络对图像,时间序列和文本数据进行分类和回归。
应用程序和图表可帮助您可视化激活,编辑网络体系结构以及监控培训进度。
对于小型训练集,您可以使用预训练的深层网络模型(包括SqueezeNet,Inception-v3,ResNet-101,GoogLeNet和VGG-19)以及从TensorFlow™-Keras和Caffe导入的模型执行传输学习。
了解深度学习工具箱的基础知识深度学习图像从头开始训练卷积神经网络或使用预训练网络快速学习新任务使用时间序列,序列和文本进行深度学习为时间序列分类,回归和预测任务创建和训练网络深度学习调整和可视化绘制培训进度,评估准确性,进行预测,调整培训选项以及可视化网络学习的功能并行和云中的深度学习通过本地或云中的多个GPU扩展深度学习,并以交互方式或批量作业培训多个网络深度学习应用通过计算机视觉,图像处理,自动驾驶,信号和音频扩展深度学习工作流程深度学习导入,导出和自定义导入和导出网络,定义自定义深度学习图层以及自定义数据存储深度学习代码生成生成MATLAB代码或CUDA®和C++代码和部署深学习网络函数逼近和聚类使用浅层神经网络执行回归,分类和聚类时间序列和控制系统基于浅网络的模型非线性动态系统;使用顺序数据进行预测。
2025/3/29 11:02:30 14.06MB deep l matlab 深度学习
1
基于HLS的Tiny_yolo卷积神经网络加速研究,从论文的角度对基于FPGA的深度学习实现方法进行了说明
2025/3/5 16:28:34 2.43MB FPGA HLS YOLO 深度学习
1
深度学习、人工智能、机器学习、卷积神经网络的调研。
2025/1/27 2:32:44 956KB 深度学习 卷积神经网络 调研
1
一份ppt介绍传统神经网络和卷积神经网络的区别和原理。
并提供了代码实现
2025/1/25 16:54:57 6.4MB 深度学习
1
结合高光谱数据和深度学习的特点,提出一种同时考虑像素光谱信息和空间信息的深度卷积神经网络框架。
该框架主要步骤如下:首先利用主成分分析法对高光谱遥感图像进行光谱特征提取,消除特征之间的相关性,并降低特征维数,获得清晰的空间结构;
然后利用深度卷积神经网络对输入的样本进行空间特征提取;
最后通过学习到的高级特征进行回归训练
2025/1/22 10:55:54 3.25MB 深度学习 高光谱图像 分类
1
卷积神经网络人脸识别python代码,附带讲解的ppt,txt中有资源链接。
2025/1/11 3:29:09 118B 人脸识别 卷积神经网络
1
注意是基于matlab编写的。
本代码简单好用,适合新手和有一定matlab基础的同学
2025/1/8 5:23:18 44.77MB matlab 车牌识别 神经网络
1
卷积神经网络的权值优化算法
2024/12/24 7:01:18 377KB 卷积神经网络 CNNS 神经网络
1
图像分类-卷积神经网络:使用MNIST时尚数据集,构建了卷积神经网络将图像分类为10个类别之一。
使用TensorFlowFramework和Keras库实现了CNN。
在GoogleColab上以60,000张图像训练模型
2024/12/19 19:05:55 551KB JupyterNotebook
1
共 199 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡